VHB Vanasse Hangen Brustlin, Inc. Transportation | Land Development | Environmental Services

October 25, 2010

Ref: 57407.03

Mr. Dennis Nealon Hydrogeologist – Water Resources Section Water Supply Division Vermont Department of Environmental Conservation 103 South Main Street, The Old Pantry Building Waterbury, Vermont 05671-0403

Re: Beaver Wood Energy Pownal, LLC Groundwater Withdrawal Permit Application

Dear Dennis:

Enclosed please find a Groundwater Withdrawal Permit Application for the proposed use of the existing gravel-packed well as a source of process water for the planned Beaver Wood biomass energy facility in Pownal. A narrative report is enclosed presenting all the information specified on the application form. A check for the \$1,500 application fee also is enclosed.

This submittal has been prepared in accordance with 10 VSA, ch. 48, subchapter 6 as amended by Act 199. Because the administrative rules for groundwater withdrawal permitting are currently in draft form, this permit application has been developed in accordance with the statute, and the draft administrative rules have been followed as a guidance in instances where the statutory language is not specific.

Please do not hesitate to contact me with any questions or comments you may have.

Sincerely,

VANASSE HANGEN BRUSTLIN, INC.

Meddie Perry

Senior Hydrogeologist

MJP/cpc Enclosures

cc: Karen Burrington, Pownal Town Clerk Pownal Selectboard Pownal Conservation Commission Bennington County Regional Commission Tom Emero, Beaver Wood Energy Pownal, LLC Bill Bousquet, Beaver Wood Energy Pownal, LLC Hans Huessy, Kenlan, Schwiebert & Facey P.C.

\\VTDATA\Projects\57407.03 BWE Pownal Permitting\reports\GW_withdrawal_application\Cover Letter.doc

7056 US Route 7 Post Office Box 120 North Ferrisburgh, VT 05473 802.425.7788 • FAX 802.425.7799 www.vhb.com

Groundwater Withdrawal Permit Application Narrative

BEAVER WOOD ENERGY BIOMASS: PROCESS WATER SUPPLY

Pownal, Vermont

Prepared for Beaver Wood Energy Pownal, LLC 230 West Street Rutland, Vermont 05701

Prepared by VHB 7056 US Route 7 Post Office Box 120 North Ferrisburgh, VT 05473

October 25, 2010

BEAVER WOOD ENERGY BIOMASS: PROCESS WATER SUPPLY GROUNDWATER WITHDRAWAL PERMIT APPLICATION NARRATIVE

Table of Contents

1.0	Introduction	1
	1.1 Applicant Information	3
	1.2 Purpose Of The Proposed Withdrawal	3
	1.3 Source Location	4
	1.4 Proposed Withdrawal Rate	4
	1.5 Applicant's Other Sources, Approvals, and Withdrawals	5
	1.6 Estimated Amount Of Water That Will Not Be Returned To The Watershed	5
	1.7 Location Of Proposed Return Flow	6
	1.8 Pre-Application Public Informational Meeting Certification	6
	1.9 Notification of Application	6
	1.10 Proposed Permitting Approach and Timeline	7
2.0	Hydrogeologic Setting	8
	2.1 Well Details	9
	2.2 Other Water Uses	10
	2.3 Surficial Geology	10
	2.4 Bedrock Geology	12
	2.5 Groundwater Hydrogeology	12
	2.6 Surface Water Hydrology	19
	2.7 Initial Conceptual Model	20
3.0	Water Resource Inventories	22
	3.1 Water Sources Within Area of Influence	22
	3.2 Surface Waters and Wetlands Within Area of Influence	23
	3.3 Potential Sources of Contamination Within Area of Influence	24
4.0	Consistency with Town and Regional Plan	25
	4.1 Pownal Town Plan	26
	4.2 Bennington County Regional Plan	27
5.0	Alternatives Analysis	28
	5.1 Mass Balance Hydrograph Analysis	30
	5.2 Alternatives Analysis Summary	33
6.0	Source Testing Proposal	34
	6.1 Production Well Testing	35
	6.2 Interference Monitoring	36
	6.3 Special Studies	37
	6.4 Data Analysis	
7.0	Conclusions and Recommendations	39
Refe	rences	41

BEAVER WOOD ENERGY BIOMASS: PROCESS WATER SUPPLY GROUNDWATER WITHDRAWAL PERMIT APPLICATION NARRATIVE

1 General Information:	Application Form
	Location Map
	Application Legal Information
	Public Notification Information
	Public Water Systems in Pownal: Map and Inventory
2 Geology:	Surficial Geologic Map
	Groundwater Contour Map
	Geologic Cross Sections
	Bedrock Geologic Map
	Well Drilling Logs – Project Well and Monitoring Wells Groundwater Hydrology Calculations
	Well Completion Reports: known nearby wells
	Well Data Summary
3 Project Well:	1994 Pump Test Report by Lincoln Applied Geology
	Yield Calculations
4 Water Resources Inventory:	Regional Hydrogeology Map
-	Hoosic River Watershed Map
	Surface Water Hydrology Data
	Well Testing & Water Resources Inventory Map
	PSOC Map and Information
	Test Monitoring Locations Inventory and Details
	Well Monitoring Permission Form
5 Alternatives Analysis:	Plant Demand Calculations
	Mass Balance Hydrograph Results – Alternatives Evaluation

Table of Appendices

1.0 Introduction

On behalf of Beaver Wood Energy Pownal LLC (Beaver Wood), Vanasse Hangen Brustlin, Inc. (VHB) presents this application for a Groundwater Withdrawal Permit persuant to 10 VSA, Chapter 48, Subchapter 6 as amended by Act 199 of 2008. The signed permit application form is on pages 1 and 2 of Appendix 1. Because the administrative rules for groundwater withdrawal permitting are currently in draft form, this permit application has been developed in accordance with the statute. The current version of the draft administrative rules (September 20, 2010), have been followed as a guidance in instances where the statutory language is not specific.

The project consists of a proposed biomass electric generation plant with a wood pellet production facility. The project would obtain potable water from an existing gravel packed water supply well that was previously permitted as a Transient Non-Community (TNC) source for the former Green Mountain Race Track (WSID #2585). The former Green Mountain Race Track is no longer in operation and the facility does not currently serve 25 or more people for 60 or more days a year. Therefore the current facility is not classified as a public water system, and the TNC water system was deemed inactive by the Vermont Department of Environmental Conservation (DEC), Water Supply Division following a sanitary survey in 2007.

The potable water system for the proposed Beaver Wood biomass project would be classified as a public Non-Transient Non-Community (NTNC) water system because it would employ more than 25 of the same people year round. Typically 41 people would be employed at the plant. Potable water demands for the plant are equal to 1.1 gallon per minute (gpm), or 780 gallons per day (gpd).

Separate from the public NTNC water system, the biomass plant also would require a source of process water to create steam for generating electricity and for cooling. Normally the Hoosic River would be utilized to provide process water. The River is the preferred

BEAVER WOOD ENERGY BIOMASS: PROCESS WATER SUPPLY GROUNDWATER WITHDRAWAL PERMIT APPLICATION NARRATIVE

source of water because the quality of the river water is more suitable as a process water source, and because of local concern about the use of groundwater in an area where many wells have marginal yields. The lower mineral concentrations in the River are more compatible with the plant equipment than the well water. On occasion, it may be necessary to use the existing well to supply process water. This groundwater withdrawal permit application is for the proposed use of the existing gravel packed well as a process water source. See page 3 of Appendix 1 for a Project Location Map.

The proposed use of the existing gravel packed well as potable water source is being permitted separately from this Groundwater Withdrawal permit application, via a public NTNC Source and Construction Permit Application, in accordance with the Vermont Water Supply Rule (2005).

This permit application, and the hydrologic testing that is proposed herein, will address the statutory requirements that:

- the proposed withdrawal must be planned in a fashion that provides for efficient use of the water;
- the proposed withdrawal must meet Vermont standards for establishing a safe yield;
- 3. the proposed withdrawal must be consistent with the town and regional plan;
- 4. the proposed withdrawal must not have an undue adverse effect on existing uses of water dependent on the same water source;
- the proposed withdrawal must not have an undue adverse effect on a public water system permitted by the VT DEC;
- 6. the proposed withdrawal must not have an undue adverse effect on significant wetlands under the Vermont Wetland Rules, or on other water resources hydrologically interconnected with the well; and
- 7. the proposed withdrawal must not violate the Vermont Water Quality Standards.

As discussed in detail below, an initial conceptual model of the site indicates that the proposed withdrawal is not likely to cause adverse affects to any existing wells, water

sources, wetlands, or surface waters; the withdrawal will be planned for efficient water use and will meet Vermont standards for safe groundwater yield, and will conform to the Pownal Town Plan and the Bennington County Regional Plan.

1.1 Applicant Information

The applicant is Beaver Wood Energy Pownal, LLC, 230 West Street, Rutland VT 05701. The primary contact person is Mr. Thomas Emero, Managing Director: (508) 321-1181.

The applicant has signed a long-term lease with Progress Partners, LLC for the use of the property and well that is the proposed source for this proposed withdrawal. A copy of the Memorandum of Lease is on pages 4 and 5 of Appendix 1.

1.2 Purpose of the Proposed Withdrawal

The purpose of the proposed withdrawal is to enable Beaver Wood to obtain adequate quantities of water for generating steam to turn the electric generating turbines, and for cooling. A groundwater source of water is being proposed as a backup to the primary water source, the Hoosic River, that flows adjacent to the site.

Withdrawal from the Hoosic may be restricted during times of low streamflow, which would require use of the well. Because the rate of water usage is very small relative to the flow of the Hoosic River, the river withdrawal is being designed as a *de minimis* withdrawal under the jurisdiction of the Vermont DEC, which would allow withdrawal to occur regardless of streamflow so long as the withdrawal rate is sufficiently small. However, U.S. Army Corps of Engineers and Fish & Wildlife Service requirements may restrict withdrawal during periods of low streamflow, regardless of the Vermont DEC *de minimis* policy. As a result, it may be necessary to obtain process water from the well for periods of time.

The well would also serve as a backup source of water in case of equipment problems, excessive sediment or turbidity levels in the river, or physical damage to the intake structure by ice, debris, or flooding.

1.3 Source Location

The GPS coordinates of the existing gravel well are 42.75434° north latitude and -73.23332° west longitude. This site is located along Lovett Cemetery Road in Pownal.

See page 3 of Appendix 1 for a Project Location Map depicting the well site.

1.4 Proposed Withdrawal Rate

Water needs will vary based on the ambient temperature, humidity, and other factors. The proposed biomass plant's normal process water consumption rate is 321.6 gpm, and the peak consumption rate is 465.2 gpm (based on a revised water balance analysis, September 29, 2010). Note that these rates are for the overall plant, and that actual usage from the well would be much lower on an annual average basis because the well is intended to be used infrequently, only on such occasions when the primary Hoosic River intake is not being used.

As a long-term average, the well is expected to be used for about 20 percent of the plant's water needs, or 72 gpm (103,080 gpd). On individual days when the well is used to provide process water, the withdrawal would vary from 129 gpm (185,800 gpd) to 465.2 gpm (669,900 gpd). Proposed withdrawal rates are summarized in Table 1.

Table 1: Proposed Groundwater Withdrawal Rates							
	Peak	Peak					
	(gpm)	(gpd)	(gpm)	(gpd)			
Daily	72	103,080	465	669,900			
Monthly	72	103,080	438	630,000			
Annual	72	103,080	194	279,500			

An additional withdrawal from the well of 1.1 gpm would occur to meet potable needs at the facility, as addressed in the public NTNC Source and Construction Permit Application (Bruno Associates, 2010).

1.5 Applicant's Other Sources, Approvals, and Withdrawals

The Applicant does not own, use, or plan to use any water sources at the site other than the proposed river intake for process water, and the existing gravel-packed well. When the well was previously permitted as a TNC source for the Green Mountain Race Track, the water system's design demand was 30,000 gallons per day (20.8 gpm) as maximum day demand, according to the water system file WSID#2585 on record with the DEC, Water Supply Division. Prior hydrogeologic testing of the well included a 7-day pumping test conducted at a rate of 514 gpm, by Lincoln Applied Geology in 1994 (LAG, 1995). The testing indicated a yield of 626 gpm according to the safe yield standards in the Vermont Water Supply Rule, A-11.6.2.1 for public non-community sources.

1.6 Estimated Amount of Water That Will Not Be Returned to the Watershed

The nature of the use of water for electricity generation and cooling will result in evaporation of approximately 85 percent of the total process water that is used in the plant, including River water. Thus, 15 percent of the total process water used in the plant, including River water, would be returned to the groundwater on-site.

Annual average return flow rates are expected to be 48.5 gpm, equal to 69,840 gpd. Therefore, compared to the 103,080 gpd average annual groundwater withdrawal rate, a net annual average of 33,240 gpd of pumped groundwater would be evaporated rather than directly returned to the watershed. As an annual average, the net amount of flow that will not be returned to the watershed would be 32 percent of the groundwater withdrawal rate.

5

1.7 Location of Proposed Return Flow

The remaining 15 percent of the total water used in the plant process would be returned to the groundwater on-site via a subsurface leachfield that is being permitted under the Vermont Underground Injection Control Rule (1982). The Project Location Map on Page 3 of Appendix 1 shows the return water location.

1.8 Pre-Application Public Informational Meeting Certification

VHB certifies that the applicant has met the requirements of 10 VSA Ch 48.6 §1418(c)(1), as amended by Act 199, requiring an informational meeting to be warned and held at least 30 days prior to the submittal of this application. The hearing was warned as required by the statute, took place at the site on September 23, 2010, and was attended by approximately 50 members of the public as well a the Vermont DEC, Water SupplyDivision.

1.9 Notification of Application

In accordance with §1418(c)(2) of the statute, VHB will notify the required statutory parties of the application by mail. A copy of the notification and map to be used is provided in Appendix 1, pages 6 and 7, and an address list follows. The following parties will receive the notification, as required by the statute.

- Pownal Town Clerk
- Pownal Selectboard
- Pownal Conservation Commission
- Clerks of adjoining Vermont municipalities (see address list and map, pages 8 through 10 of Appendix 1)
- Bennington Regional Planning Commission

- Landowners and Mobile Home Park residents within the project well's Estimated Area of Influence (see list on page 9, and map on page 12 of Appendix 1.)
- All other active Public Water Systems in Pownal (see map, page 10 and list on page 11 of Appendix 1.)
- Voluntarily, to all landowners within 3,000 feet of the well even if beyond the estimated Area of Influence (see Well Testing and Parcel Map on page 13, and address list on page 14 of Appendix 1.)
- Voluntarily, to interested parties who have requested notification (see interested party list, page 15 of Appendix 1).

In accordance with \$1418(c)(3) of the statute, VHB also will place a notice of the application in the Bennington Banner newspaper and in the Pownal Town Clerk's office. See page 16 of Appendix 1 for a sample of this notification.

Complete copies of this application are being mailed to the following:

- Pownal Town Clerk
- Pownal Selectboard
- Pownal Conservation Commission
- Bennington Regional Planning Commission

1.10 Proposed Permitting Approach and Timeline

- The Vermont DEC will accept comments from the public regarding the Permit Application for 30 days (until November 24). During this time, the Vermont DEC will review the application and conduct a site visit.
- 2. A public meeting regarding the application may be held, if requested in writing or at the decision of the Vermont DEC. The meeting would be warned 10 days in advance by a posting in the Bennington Banner newspaper legal notices section, and in the Pownal Town clerk's office. The meeting will provide an opportunity to comment on

the application in general, and on the proposed well testing plan in particular. (Anticipated date is December 6, or later depending on time for the VT DEC to review the application.)

- The DEC may determine that Source Testing may commence. The Source Testing Plan may be revised in response to comments before approval to conduct the testing is issued.
- 4. Once the DEC has issued approval to conduct the testing, permission forms requesting permission to monitor private wells will be mailed to property owners and public water systems within the approved testing area. 30 days will be provided for well owners to respond to the permission request before the test will begin (testing could start on or after January 6, 2011).
- 5. The existing well at the Green Mountain Race Track will be tested to measure its yield and to determine what effect, if any, it causes to other wells and water resources in the area.
- 6. A report of the testing and hydrogeologic study shall be submitted to the VT DEC within 90 days of the completion of the test.
- 7. A groundwater withdrawal permit may be issued after the VT DEC has completed its review of the report.

2.0 Hydrogeologic Setting

The site is located in the Taconic range in far southwestern Vermont. The well is situated along the bottom of the Hoosic River Valley, near the floodplain. Flowing northward towards its confluence with the Hudson River, the Hoosic River has a watershed of 211 square miles at the project site.

The valley bottom contains sands and gravels, as well as layers of alluvial sediments including silt and clay. Layers of silt and clay above and below the gravel provide partially confining conditions in the gravel aquifer, and protect the underlying bedrock aquifer from potential surface sources of contamination. Significant quantities of water recharge the productive gravel aquifer in the valley bottom, originating on the higher terrain along the hills flanking the valley. In the higher terrain above the valley floor, soils are thin sands and glacial tills, enabling recharge to the underlying bedrock. The bedrock in the area, identified as chiefly the Bascom and Hortonville formations, generally support low-yielding wells.

2.1 Well Details

The driller's log for the existing gravel well is provided on page 6 of Appendix 2. This well was drilled in 1962 as part of the original construction of the Green Mountain Race Track (GMRT). The well is 18 inches in diameter with a 24-inch diameter gravel pack surrounding the screen. Well construction is appropriate for a gravel packed water well, and includes 52 feet of 18-inch diameter steel casing below grade, 15 feet of 18-inch diameter screen with 0.120-inch slotting. The well is protected within a concrete wellhouse that houses the pump, backup generator, piping and valving, and storage tank. The well casing extends approximately 2 feet above the cement floor inside the wellhouse, and the well is sealed with a tightly fitting cap that allows the vertical turbine pump motor shaft to operate. Well construction and yield characteristics of the well are presented in Table 2.

Table 2: Summary of Well Characteristics							
Source ID Total Depth (ft) (ft) (ft)		Diameter (in)	Pump Intake Setting (ft)	Well Screen Setting (ft)	Well Screen Slot Size (in)	Estimated Safe Yield (gpm)	
Beaver Wood Gravel Well	67	13.8	18	57	52-67	0.120	626
* elevation benchmark is top of well casing, 543.04 feet above mean sea level							

The well location is adequately protected from potential contaminant sources. Testing has confirmed that the water quality meets all Maximum Contaminant Levels from the 2005 Vermont Water Supply Rule, and that the well is not impacted by natural or manmade contaminants. The well is located on land owned by Progress Partners, Ltd. and is leased to Beaver Wood, who also leases the property near the well where the biomass facility has been proposed (refer to the Memorandum of Lease, pages 4 and 5 of Appendix 1). Agricultural lands are not present within the well's estimated area of influence or recharge area. Section 3.3 below provides a detailed assessment of the potential sources of contamination in the estimated area of influence and recharge area.

2.2 Other Water Uses

In addition to the proposed use of the gravel well for process water, the proposed Beaver Wood Energy Pownal, LLC biomass project would be classified as a public Non-Transient Non-Community (NTNC) water system because it would employ more than 25 of the same people year round. Typically 41 people would be employed at the plant. Potable water demands for the plant are equal to 1.1 gallon per minute (gpm), or 780 gallons per day (gpd). A Public NTNC Source and Construction Permit Application is pending (Bruno Associates, 2010).

When the well was previously permitted as a TNC source for the Green Mountain Race Track, the water system's design demand was 30,000 gallons per day (20.8 gpm) as maximum day demand, according to the water system file WSID#2585 on record with the DEC, Water Supply Division. The race track is not active currently.

2.3 Surficial Geology

In the valley floor where the well is located, surface soils consist of sand and gravels to depths of approximately ten to twenty feet below grade. Beneath the sands and gravels, the soils grade finer to silts and clays. The Surficial Geologic Map of Vermont (2008)

BEAVER WOOD ENERGY BIOMASS: PROCESS WATER SUPPLY GROUNDWATER WITHDRAWAL PERMIT APPLICATION NARRATIVE

indicates that surficial materials at the project site consist of alluvium (silt), and clay (see the Surficial Geology Map on page 1 of Appendix 2). Well drilling records generally confirm the Surficial Geologic map, and indicate the presence of silt and clay beneath the surficial materials. At least 60 feet of overburden is present above the bedrock.

Soil logs from six monitoring wells that VHB installed in the unconfined water table in the vicinity of the proposed return water leachfield, and from 6 monitoring wells installed by LAG in 1994, indicate that the water table is present in sand and gravel materials that extend to depths of approximately 10 to 20 feet below grade. Silt and clay were identified beneath the sand and gravel. The Cross-Section Reference Map on Page 2 of Appendix 2 shows the well locations on a map. Cross sections generated from the soil logs from the monitoring wells, the project supply well, and the Alta Gardens Mobile Home Park (MHP) well are shown on pages 3 and 4 of Appendix 2. Soil logs from the monitoring wells at the site are shown on pages 7 through 22 of Appendix 2.

At the project well, the lithology consists of 30 feet of topsoil, gravel, "hardpan" and stone, then an 11 foot thick layer of clay and silt, and then gravel to the bottom of the well 67 feet below ground surface. About 3,000 feet north of the project well, the Alta Gardens Mobile Home Park (MHP) well is a drilled bedrock well. The well completion report indicates 10 feet of gravel at the surface, which is underlain by 40 feet of clay, then another 10 feet of gravel above the bedrock which was encountered 60 feet below ground surface. Another 3,000 feet north of the Alta Gardens MHP site, the Pownal Fire District #2 gravel well is screened from a depth of 62.5 feet to 68.8 feet, in a gravel deposit that is buried below a deep layer of clay. See pages 29 to 70 of Appendix 2 for all available well drilling records for the area.

In the higher terrain outside the valley bottom, more permeable materials such as sand, glacial till, and kame deposits (sand and gravel) are mapped, enabling groundwater recharge. See the Surficial Geology Map on page 1 of Appendix 2.

2.4 Bedrock Geology

Bedrock at the site is buried approximately 60 feet below the clay, silt, sand, and gravel surficial materials. According to the Centennial Geologic Map of Vermont (1961), bedrock at the site is comprised of the Ordovician-age Bascom formation, and undifferentiated Luke Hill, Naylor Ledge, and Hastings Creek Limestones, which consist of interbedded dolomite, limestone, and marble; calcareous sandstone, quartzite, and limestone breccia. To the west of the leachfield site, bedrock is identified as the Ordovician-age Hortonville formation, which consists of black, carbonaceous and pyritic slate and phyllite, which is locally sandy, and commonly contains brown weathered limy beds near the base. Refer to the Bedrock Geologic Map on page 5 of Appendix 2.

2.5 Groundwater Hydrogeology

Two distinct groundwater aquifers are present in the vicinity of the site. A productive gravel aquifer exists in the valley bottom. Groundwater also is present in the water table in the upper ten to twenty feet of the soils in the valley bottom. Outside of the valley bottom, as well as beneath the gravel aquifer, a bedrock aquifer exists. The reported yields of wells drilled into the bedrock are significantly lower than those of the gravel wells, indicating a low-permeability and low-transmissivity aquifer that does not permit high rates of water flow.

Water Table

Hydrogeologic studies and monitoring of the 12 monitoring wells at the Beaver Wood site indicate a westward groundwater flow direction towards the Hoosic River in the unconfined water table. Groundwater elevation measurements indicated that the unconfined water table is found between 7 and 12 feet below grade in the vicinity of the proposed leachfield (see page 23 of Appendix 2 for data). The water table flows westward at a gradient of 2.5 percent between this location and the Hoosic River. Refer to the groundwater contour map shown on page 2 of Appendix 2. Prior groundwater

contour maps developed by LAG (1995) are also provided, see pages 24 and 25 of Appendix 2. A flow velocity of 1.2 ft/day was determined for groundwater in the water table (see calculations, pages 26 to 28 of Appendix 2).

Project Water Supply Well

As indicated by the documented high yield of the existing gravel packed well that is the subject of this permit application, the gravel aquifer in the valley bottom has a very high yield. Initial testing of the project well in 1962 indicated that it could sustain pumping at rates of at least 520 gallons per minute. More detailed hydrogeologic testing was conducted in 1994, including a 7-day pumping test at an average rate of 514 gpm. The report of the 1994 test noted that the well's yield had increased compared to the initial testing in 1962. Based on the data collected from the 1994 test, a safe yield of approximately 630 gpm was calculated.

Appendix 3 presents the report of the 1994 pump test on pages 1 to 87 (Lincoln Applied Geology, 1995). Pages 84 to 87 show the original 1962 yield test data. Pages 88 through 91 of Appendix 3 present calculations performed by VHB analyzing the yield of the well by applying the safe yield standards from the Vermont Water Supply Rule, part A-11.6.2.1 to the 1994 test data. The yield of 630 gpm is based on a scenario of 180 days of continuous pumping.

As explained in detail in the LAG report in Appendix 3, the 7-day pumping test conducted in November 1994 took place following a period of very little rainfall, providing ideal conditions for testing the well's yield. Measurement of water levels in the monitoring wells surrounding the project well was conducted before, during, and after the 7 days of continuous pumping at 514 gpm. The measurements of drawdown in these wells were used to develop a computer model that determined the extent of the project well's groundwater capture zone, or area of influence, which is discussed further in the next section below.

Interestingly, the LAG report compared the drawdown in the project well from the 1994 test to the drawdown measured in the initial 1962 testing, and found that the well's capacity has increased despite over 30 years of use. Less drawdown was caused by a much longer pumping test at a similar rate in 1994 than in 1962, as summarized in table 3 below.

Table 3: Comparison of 1962 Test to 1994 Test: Beaver Wood Energy Project Gravel-Packed Well						
1962 Test 1994 Tes						
Days of Pumping	3	7				
Pump Rate, gpm	520	514				
Maximum Drawdown, Feet	46	29				
Specific Yield, gpm/foot of drawdown	11.3	17.7				

In a letter dated June 11, 2004, the Vermont Water Supply Division determined that the project gravel well was not groundwater under the direct influence of surface water.

Estimated Area of Influence

The project well's groundwater capture zone, or area of influence, was determined by a computer model based on the measurements of water level drawdown in the monitoring wells and the project well from the 7 days of continuous pumping at 514 gpm conducted in 1994. The model was used to predict the capture zone for steady-state conditions pumping at 500 gpm, representing long term pumping conditions (i.e. constantly pumping at 500 gpm until the cone of depression has reached equilibrium and has stopped expanding). This zone indicates the well's maximum area of influence where groundwater levels would be affected by the well. In contrast to the actual capture zone that had been measured at the end of the 7-day test, the steady-state area of influence is much larger.

Groundwater recharge is limited within the area of influence because of the layers of silt and clay that cover the gravel aquifer in this area. More recharge originates in the higher terrain east of the area of influence, and flows as groundwater passively under the influence of gravity until it encounters the well's area of influence. VHB delineated the

area of additional recharge based on the surface topography to represent the area upgradient from the estimated area of influence. The well's estimated area of influence and additional recharge area are shown on the Surficial Geologic Map on page 1 of Appendix 2.

Other Area Water Supply Wells

A public gravel well supplying the Pownal Fire District #2 is located approximately 6,500 feet north of the project well (see the Regional Hydrogeology map, page 1 of Appendix 4). The well completion report is on pages 29 to 30 of Appendix 2, and shows that the well is screened from a depth of 62.5 feet to 68.8 feet, in a gravel deposit that is buried below a deep layer of clay. It has a static level of ten feet and an estimated 75 gpm yield according to the driller. Sanitary Surveys on file with the Vermont Water Supply Division (1999, 2004, 2007, 2009) indicate that the well is 8 inches in diameter with a 12-inch diameter gravel pack. The well has an approved safe yield, in accordance with Vermont standards for public community sources, of 97 gpm, demonstrating the high yield of the gravel aquifer in contrast to the bedrock aquifer. Metered usage of water for the Fire District has been reported to the Water Supply Division, and the sanitary survey (2004) noted an average daily usage of 30,000 gpd, equal to 42 gpm. Compared to the safe yield of 97 gpm, the metered usage suggests that the well has a reserve capacity on the order of 55 gpm.

Like the project well, this gravel well also is located in a valley bottom gravel aquifer, and while it is not hydrogeologically connected to the project well, it provides information about the large physical extent and abundant yield of the gravel formation that is in the valley.

Because of the significant distance to the Pownal Fire District well, the project well is highly unlikely to affect its water supply. The project well is not within the hydrogeologically delineated wellhead protection area for the Pownal Fire District #2 well. Likewise, the Beaver Wood well's estimated area of influence and recharge area do

not overlap the wellhead protection area for the Pownal Fire District #2, and therefore Beaver Wood's proposed withdrawal of water cannot affect its yield.

The well supplying the Alta Gardens Estates MHP PCWS is located about 3,000 feet north of the project well. The well is a drilled bedrock well with a yield of 15 gpm reported by the driller, and a total depth of 170 feet. Bedrock was encountered 60 feet deep beneath layers of gravel and clay. The static level was reported as 30 feet below grade. See the well completion report on pages 31 and 32 of Appendix 2. According to the Permit to Operate the Alta Gardens Estates water system (October 20, 2004), the well is not under the direct influence of surface water. A formal pumping test does not appear to have been conducted on this well, but an Engineering Evaluation of the Alta Garden Estates Water System (Wright Engineering, 2001) notes has been able to meet the water needs of the MHP, which are identified as 3,596 gpd on average, and 10,800 gpd maximum, based on meter readings.

The Alta Gardens Estates Delineated Source Protection Area report (ANR, 2002), provided on pages 92 to 101 of Appendix 3, summarizes the known information about the well's hydrogeology. Recharge to the bedrock aquifer originates in the hills east of the well. Because of the significant distance to the Alta Gardens well, the project well does not affect its water supply. The project well is not within the hydrogeologically delineated wellhead protection area for the Alta Gardens well, and is in a gravel aquifer that is separate from the bedrock aquifer at the Alta Gardens well. Likewise, the Beaver Wood well's estimated area of influence and recharge area do not overlap the wellhead protection area for the Alta Gardens well, and therefore, Beaver Wood's proposed withdrawal of water is highly unlikely to affect its yield.

Yields of drilled bedrock wells in the area are fairly low. As summarized in Table 4 below, the average yield of the twenty area bedrock wells on record at the Vermont DEC, Water Supply Division was 8.8 gallons per minute (gpm), with several wells yielding zero, or less than 1 gpm. Well completion reports for all known wells within 3,000 feet of the project well are in Appendix 2, pages 31 to 70. Page 71 of Appendix 2 provides a

Table 4: Area Well Summary: Well Completion Reports Within 3,000 Feet of Project Well							
Well Report #	Well Depth (ft)	Yield (gpm)	Static Water Level (ft)	Over Burden (ft)	Well Type	Lithology	
73	245	2	20	9	Bedrock	0-9: Clay; 9-245: Shale	
141	230	2	30	50	Bedrock	0-50: Hardpan; 50-230: Shale	
146	249	55		8	Bedrock	0-90: Hardpan and Clay; 90-340: rock	
155	115	8		10	Bedrock	0-10: Soil; 10-115: Schist Ledge	
156	170	15	30	60	Bedrock	0-10 Gravel; 10-50 clay; 50-60 gravel; 60-170 shale, quartz, marble, granite	
234	305	2		62	Bedrock	0-62: Sand and Silt; 62-305: Granite	
235	505	0.0		97	Bedrock	0-97: Sand, Silt; 97-505: Granite	
270	500	0.0	6	20	Bedrock	0-20: Gravel; 20-300: Black Slate; 300-500: Blue Granite	
288	482	4	100	130	Bedrock	0-60: Sand and Gravel; 60-130: Hardpan and Clay; 130-482: Gray Shale and Limestone	
309	500	0.5	200	30	Bedrock	0-30: Brown Gravel and Clay; 30-50: Black Shale; 50-500: Black Shale-Water	
313	222	20	40	10	Bedrock	0-10: Hardpan; 10-222: Gray & Black Shale with seams of quartz, water	

Table 4: Area Well Summary: Well Completion Reports Within 3,000 Feet of Project Well							
Well Report #	Well Depth (ft)	Yield (gpm)	Static Water Level (ft)	Over Burden (ft)	Well Type	Lithology	
363	500	0.0	100	16	Bedrock	0-16: Clay Sand; 16-500: Bedrock (Gray Black Shale)	
405	625	5	16	109	Bedrock	0-7: Gravel; 8-108: Hardpan and Rocks; 109-625: Mostly Black Slate, some Spots of Green	
5101	600	2	400	5	Bedrock	0-5: Sand; 5-600: Blue/Black Shale	
6783	500	0.75	300	90	Bedrock	0-20: Fine Gravel; 20-90: Clay; 90-500: Black Shale	
24722	320	10	5	10	Bedrock	0-6: Sandy Loam; 6-10: Hardpan; 10-320: Black/Gray Slate/Shale Rock	
27757	280	40	15	39	Bedrock	0-39: Till, Sand, Rocks; 39-105: Black, Gray Shale; 105-280: Gray Shale	
33815	702	1	140	39	Bedrock	0-39: Brown Clay; 39-702: Black Shale	
41372	125	8	40	67	Bedrock	0-67: Clay; 67-125: Black Shale with Quartz Soft	
41414	500	1.25	85	115	Bedrock	deepened existing well: 115-500: Black Shale med.	
n	20	20	16	20			
Mean	384	8.8	95	49			
Median	401	2.0	40	39			
Minimum	115	0	5	5			
Maximum	702	55	400	130			

Groundwater Recharge and Discharge Areas

Groundwater in the valley bottom aquifer most likely originates as recharge on the higher terrain along the hills flanking the valley. In the higher terrain outside the valley bottom, more permeable materials such as glacial till and kame deposits (sand and gravel) are mapped, enabling higher rates of groundwater recharge. The gravel aquifer in the valley floor is beneath a clay and silt layer that inhibits local recharge and protects against surface contaminants. On the east side of the Hoosic River, groundwater flows from east to west, towards the River. The groundwater flow velocity in the shallow water table along the valley floor was calculated to be 1.2 ft/day. Groundwater recharging vertically through the clay layer to the underlying materials would take approximately 70 years.

2.6 Surface Water Hydrology

The major surface water resource in the vicinity of the project is the Hoosic River. Ladd Brook is the largest tributary in the immediate project vicinity. Some wetlands that have been mapped as significant by the Vermont Significant Wetlands Inventory (2010) are present along the River and its tributaries. Two manmade ponds are present at the project site. The manmade ponds were excavated during the early 1960's as part of the race track construction, and were built to manage stormwater runoff and provide ornamental features in the center of the horse track. Page 1 of Appendix 4 shows surface water features in the project vicinity.

Hoosic River

At the project site, the Hoosic River has a relatively large watershed area of 211 square miles. See page 2 of Appendix 4 for a map of the watershed showing the location of the project and the two USGS gauges that are situated upstream of the project site. Rising in the Berkshire Mountains of western Massachusetts, the Hoosic flows northward through Vermont and New York en route to the Hudson River.

Statistical streamflows were determined by analyzing USGS gauge data from the Hoosic watershed in accordance with standard hydrologic procedures. 7Q10 Streamflow was determined in accordance with USGS procedures (Riggs, 1972) based on 70 years of data from the USGS Hoosic River near Williamstown, MA gauge. See pages 3 and 4 of Appendix 4. A 7Q10 flow of 65 cubic feet per second (cfs), equal to 0.31 cfs per square mile of watershed area (csm), was determined at the project site based on 70 years of flow records. In contrast, the statewide average 7Q10 flow in Vermont is 0.10 csm. The Hoosic River's drought flow rate is relatively high on a per-square-mile of watershed basis, indicating that the Hoosic River watershed has ample amounts of water.

To compare the proposed withdrawal rate to the lower range of flows that can be expected in the Hoosic River, a *de minimis* flow of 5 percent of the site specific 7Q10 flow was determined. Water may be withdrawn from the Hoosic River in accordance with the Vermont Agency of Natural Resources' Streamflow Procedure (1993) at a *de minimis* rate of 1,458 gallons per minute. See pages 3 and 4 of Appendix 4. In contrast, the proposed water demand for the project on peak days is only 465.2 gpm.

2.7 Initial Conceptual Model

The project well obtains water from a productive gravel aquifer located along the bottom of the Hoosic River Valley. Two distinct groundwater aquifers are present in the vicinity of the site. A productive gravel aquifer exists only in the valley bottom, where glacial and fluvial processes deposited deep layers of overburden. Outside of the valley bottom, soils are thin and the bedrock aquifer is the only underground source of water present. The reported yields of wells drilled into the bedrock are significantly lower than those of the gravel wells, indicating a low-permeability and low-transmissivity bedrock aquifer that does not permit high rates of water flow.

Groundwater in the valley bottom aquifer most likely originates as recharge on the higher terrain along the hills flanking the valley. In the higher terrain above the valley

20

BEAVER WOOD ENERGY BIOMASS: PROCESS WATER SUPPLY GROUNDWATER WITHDRAWAL PERMIT APPLICATION NARRATIVE

floor, soils are thin sands and glacial tills, enabling recharge to the underlying bedrock. Layers of silt and clay above and below the gravel provide partially confining conditions in the gravel aquifer, and protect the underlying bedrock aquifer from potential surface sources of contamination. On the east side of the Hoosic River, groundwater flows from east to west, towards the River. The groundwater flow velocity in the shallow water table along the valley floor was calculated to be 1.2 ft/day. Groundwater recharging vertically through the clay layer to the underlying materials would take approximately 70 years.

The bedrock in the area, identified as chiefly the Bascom dolomite, marble, and limestone; and the Hortonville slate and phyllite formations, generally support low-yielding wells.

The Hoosic River is the dominant surface water in the area, draining a 211 square mile watershed at the project site. Significant wetlands are located sporadically along the banks of the river, although none are present in the well's area of influence. Surface waters likely have limited hydraulic connectivity to the gravel aquifer due to the confining layers of clay and silt above the aquifer.

The proposed use of the well would involve intermittent use at a long-term average rate of 72 gpm. On peak use days, a rate of 465 gpm would be withdrawn. In addition, a small amount of water, 1.1 gpm, would be withdrawn routinely for potable uses.

Based on the data collected from the 1994 test of the project well, a safe yield of approximately 630 gpm was calculated. The aquifer is able to sustain long term use of the well, based on the observation that the well's yield had increased following its initial testing in 1962. The well's area of influence was determined for long-term steady-state conditions, and shows that groundwater flow to the well primarily originates from the south and east, with a small component of groundwater flow from the direction of the Hoosic River to the west. Under transient pumping conditions, such as the proposed use of the well, the area of influence is smaller and does not extend as far as the River. Long term conditions of constantly pumping at 500 gpm until the cone of depression has

reached equilibrium and has stopped expanding, were predicted using a computer model based on the results of the 7-day pumping test conducted in 1994. The well's estimated area of influence and additional recharge area are shown on the Surficial Geologic Map on page 1 of Appendix 2.

3.0 Water Resource Inventories

3.1 Water Sources Within Area of Influence

No water sources, aside from the project well itself, are known within the estimated area of influence. The land within the estimated area of influence consists of the grounds of the former Green Mountain Race track, which was supplied from the project well. Most of the former race track outbuildings and stables have been demolished to allow the development of the proposed EOS solar electric project, which will not use a water supply. Refer to the Well Testing and Water Resources Map on page 5 of Appendix 4.

Because no water sources exist within or near the estimated area of influence, the proposed withdrawal is expected to comply with §1418(e) (4) of the statute, which requires that the proposed withdrawal will not have an undue adverse effect on existing uses of water dependent on the same water source, and with §1418(e) (5) which requires that the proposed withdrawal will not have an undue adverse effect on a public water system permitted by the agency of natural resources. The proposed source testing program will confirm whether the proposed use of the existing gravel well does not affect other water sources.

Although it is not required to monitor any water sources during the testing, because none are present within the estimated area of influence, in response to public concern about water supplies in the area, and to obtain more data about the groundwater hydrology of the site, Beaver Wood will be offering voluntarily to monitor all water sources within a

3,000-foot radius of the project well, and thus many wells and water sources that are beyond the estimated area of influence may be monitored. This extra monitoring will provide additional data to confirm that the withdrawal does not cause any adverse effects to existing water sources.

3.2 Surface Waters and Wetlands Within Area of Influence

The only surface water resource that is in the estimated area of influence is the Hoosic River, which is adjacent to the area. Outside the estimated area of influence, but in the estimated recharge area, is a manmade pond that was excavated during the early 1960's as part of the race track construction. The regional hydrogeology map on page 1 of Appendix 4 shows surface water features in the project vicinity.

The proposed withdrawal is not anticipated to have a significant effect on streamflow in the Hoosic River, or water levels in the manmade pond, because the silt and clay layers that are above the aquifer most likely inhibit hydrologic interconnections between the well and the surface waters. Additionally, because the withdrawal rate is extremely small in proportion to streamflows in this large watershed river, any potential hydrologic interconnection would have a *de minimis* effect to streamflows.

The proposed withdrawal is expected to comply with §1418(e)(6) of the statute, which requires that the proposed withdrawal will not have an undue adverse effect on significant wetlands under the Vermont Wetland Rules (2010), or on other water resources hydrologically interconnected with the well or spring from which the proposed withdrawal would be made. No significant wetlands exist within the estimated area of inlfluence, and the two manmade ponds on the Beaver Wood project site have been detemined to be not significant wetlands by the Vermont DEC, Wetlands Division. The proposed source testing will confirm whether the proposed use of the existing gravel well does not affect surface water resources and wetlands.

3.3 Potential Sources of Contamination Within Area of Influence

A Source Protection Plan has been developed for the NTNC use of the well, based on a wellhead protection area (WHPA) that is identical to the estimated area of influence and additional recharge area for the proposed withdrawal (VHB, 2010). Potential Sources of Contamination (PSOCs) within the WHPA were identified through site research and inspection, and are discussed below. All PSOCs are identified on the PSOC map on page 6 of Appendix 4. Page 7 of Appendix 4 lists PSOC identification and owner information. Table 5 below provides a brief summary of the PSOCs.

Table 5: PSOC Summary							
PSOC ID	Location	PSOC Description	Risk Level				
PSOC 1	Est. Area of Influence	Underground Storage Tanks	Low				
PSOC 2	Est. Area of Influence	Historic Leachfield	Low				
PSOC 3	Additional Recharge Area	Municipal Sewer Line	Low				
PSOC 4	Additional Recharge Area	U.S. Route 7	Low				
PSOC 5	Additional Recharge Area	Railroad	Low				
PSOC 6	Additional Recharge Area	Stormwater Pond	Low				
PSOC 7	Additional Recharge Area	Lovett Yard Cemetery	Low				
PSOC 8	Additional Recharge Area	Gravel Pit	Low				

The PSOCs that are within the estimated area of influence are described below, and pose a low level of risk to the gravel well and to other water sources.

<u>PSOC #1, Pulled Underground Storage Tanks, low risk</u>: Ruanaidh Realty Corporation is the responsible party for four underground storage tanks (UST's) that were removed from the former Green Mountain Race Track site on November 10 and 11, 1993. Three of the pulled UST's were located within the well's estimated area of influence, and the closest UST was located approximately 185 feet away from the gravel well. The fourth UST was located outside the area of influence to the north of the race track. Initial groundwater and PID test results showed elevated levels of volatile organic compounds (VOC), benzene, toluene, ethylbenzene, and xylene (BTEX), and methyl tertiary butyl ether (MTBE) in the immediate vicinity of the USTs. As a result, the site was designated as Vermont Hazardous Site #93-1511. Groundwater samples collected the following year

before, during, and after the 7-day long pump test at the well and six installed monitoring wells contained no detectable contaminant concentrations. Due to the absence of contamination, the hazardous site was closed, and the Vermont DEC issued a Site Management Activities Complete (SMAC) determination on May 2, 1995. Additionally, the gravel well was tested for all contaminants required for an NTNC water source and no VOCs were detected in samples collected from the gravel well on August 24, 2010. Risk of contamination to the gravel well is low because no VOCs have been detected in groundwater at the site. Likewise, there is no risk that the proposed withdrawal would affect water quality at other locations by causing the movement of a groundwater contaminant plume, because none exists.

<u>PSOC #2, Historic Leachfield, low risk</u>: The GMRT formerly operated a leachfield that served the track manager's office and was located approximately 530 feet away from the gravel well, within the estimated area of influence. The leachfield is non-operational, and groundwater samples collected on June 4, 2010 and August 24, 2010 contained low concentrations of nitrate measuring 0.36 mg/L and 0.40 mg/L, respectively. The nitrate concentrations are well below the Vermont Drinking Water Maximum Contaminant Level (MCL) of 10 mg/L (ANR 2005) and are typical of natural ambient levels in groundwater. Therefore, this PSOC is a low risk of contamination to the gravel well. Likewise, there is no risk that the proposed withdrawal would affect water quality at other locations by causing the movement of any wastewater-related groundwater contamination.

4.0 Consistency with Town and Regional Plan

The proposed withdrawal is consistent with the Town and Regional plans, because the withdrawal will not adversely affect other water supplies or surface water resources, because the Beaver Wood project will be supplied with water from the project site without burdening a municipal water system, and because the project site contains a productive gravel aquifer that is suitable for providing a supply of water. The Regional Plan

encourages new development to take land suitability issues, such as the availability of water supply, into consideration, and specifically describes the gravel aquifer in the Hoosic River valley in Pownal as able to produce large quantities of water. The source testing program will ensure that supplies of groundwater and surface water are of sufficient quality and quantity to meet the future needs of the Town.

4.1 Pownal Town Plan

The Pownal Town Plan states that the natural environment is its "single greatest asset." To protect this asset, the town dictates that land development should occur in an environmentally sound manner in areas for which it is best suited and that it must consider water quality and supply in current and future land use decisions.

The Pownal Town Plan notes that approximately 3000 of Pownal's residents obtain water from shallow wells, deep wells, or springs, and that small water systems serve the remainder of the town's population. The Plan notes that in Pownal Village, 85 percent of residents are served by the Pownal Fire District #2 small water system.

A key objective of the Pownal Town Plan states that the town must "ensure a supply of water, both underground and surface, that is sufficient in quality and quantity to meet the future needs of the town to the greatest extent possible." Natural areas such as streams, wetlands, and forests that provide surface or groundwater supplies for shallow wells should be protected from disturbances that affect the quantity of water supplied.

The Town Plan states that "it is imperative that any future development be sensitive to the need to protect the public health and safety and avoid diminishing the quality of the air or surface and ground water." Specifically, Pownal desires to ensure that "energy-related facilities are properly sited with consideration to natural and scenic resources and environmental impacts." The Plan does not distinguish between the use of water by residential, commercial, or industrial development. The Plan states that the rate of

growth of residential development in Village areas must be consistent with the capacity of centralized water systems.

Using the Pownal Town Plan as a framework for evaluating Beaver Wood's proposed withdrawal, the proposed use of the project well is consistent with the Plan as long as it is demonstrated that a sufficient quantity of clean water remains available to meet the town's needs. The proposed source testing will verify whether the use of the project well will have no adverse impact to any existing water supply, as is expected.

4.2 Bennington County Regional Plan

The Bennington County Regional Plan states that new development must: "take into consideration land suitability such as water supply. . ." and not "place excessive burdens on public utilities, facilities, or services."

Adequate new and existing public facilities such as water supply systems are "critical to the sustenance of existing communities, and are necessary to support future growth and development." The Regional Plan states that water supply is a critical component of infrastructure, so sufficient quantity and quality of surface and groundwater is "essential to the well being of the area's residents and visitors as well as the region's economy."

The Regional Plan is based on an understanding of hydrogeology that is consistent with the conceptual model presented above. The Plan states that groundwater is the primary supply of potable water in the region, especially from bedrock fractures, and notes that while wells producing water from these bedrock features typically have lower yields, "the Hoosic River Valley in Pownal and Stamford also contains sufficient thickness of water bearing gravel to produce large quantities of water."

The Regional Plan states that the protection of all public water supplies is of great importance. To ensure sufficient quality and quantity of the water systems, "aquifers

and ground water recharge areas . . . must be protected . . . source protection areas have been identified and mapped; uses within these designated areas should be monitored. All of these efforts should be directed toward providing adequate supplies of clean water to residential, commercial, and industrial users, while supporting new development in designated growth centers."

Withdrawal from the project well is consistent with the Bennington County Regional Plan as long as it is demonstrated that the proposed rate of extraction does not interfere with the aquifers, recharge areas, or delineated Source Protection Areas of surrounding water supplies, which will be accomplished through the proposed source testing program. Unlike many of the surrounding wells that draw from the fractured bedrock aquifers that extend throughout Pownal's hills, the project's well draws water from the high-yielding gravel aquifer in the Hoosic River Valley that is described as a separate and distinct source of water in the Bennington County Regional Plan. The gravel aquifer is hydrogeologically separate from the surrounding bedrock aquifers, limiting the likelihood of interference.

5.0 Alternatives Analysis

Alternative water sources have been evaluated, including surface water withdrawal from the Hoosic River, surface impoundments, and connection to a public community water system. Use of the Hoosic River withdrawal at all times is being pursued, in order to reduce the amount of withdrawal that would be needed from the well. The project has been designed to conserve water and will incorporate the newest, most advanced process technology to maximize efficiency.

A public community water system is not available at the project site, and extension of water mains to existing public community water systems is not feasible, as nearby PCWS do not have the surplus capacity to supply the project.

Due to the more suitable water quality in the Hoosic River and in response to public concerns about the use of groundwater for a private commercial enterprise and about the low yield of many domestic bedrock wells in Pownal, full reliance on the Hoosic River as the process water source for the poject is being investigated. The well is indeed considered as a backup supply, or alternative to the River, which is the primary proposed source. Use of the well would be required only on such occasions when withdrawal from the River was not possible, because the river is the preferred source of water due to superior water quality. The lower mineral concentrations in the River are more compatible with the plant equipment than the well water.

The proposed groundwater withdrawal rate of 72 gpm (103,080 gpd) stated above in section 1.4 is based on the application of a streamflow-based limitation on withdrawal from the river, which may be applied through the USACE Section 404 review of the project. Although Vermont regulations allow the project's entire water needs to be withdrawn from the River at all times, in accordance the *de minimis* policy due to the very small rate of withdrawal in proportion to the River's 7Q10 drought flow rate, the current interim Federal procedures may prohibit withdrawal from the River when its flow is less than the aquatic base flow rate of 89 cfs at the site. The Federal procedures present the aquatic base flow limit as a default, and do also allow site specific studies to be considered. Therefore, Beaver Wood is working with the US Army Corps of Engineers to determine whether the downstream effects of the withdrawal can be considered to be sufficiently insignificant that use of the river would be allowed at more times. In such a case, the proposed groundwater withdrawal rate could be reduced.

Surface impoundments, such as the existing manmade pond at the site, have been evaluated as alternative sources of water. Impoundments were analyzed to determine if sufficient water could be stored to enable the plant to rely on the stored water during times of low streamflow when the Hoosic River could not be used. The existing manmade pond stores approximately 12 million gallons (Mgal) of water, which is insufficient to supply the plant through the expected periods when withdrawal from the river could not occur. Enlargement of the pond to 83.4 Mgal would be required, which is not possible because

sufficient area does not exist on site. Additionally, use of storage impoundments would be unacceptable because the water used for steam generation must be clean and free of algae, sediment, and suspended matter whereas water ponded in storage normally develops high levels of these substances.

5.1 Mass Balance Hydrograph Analysis

A comprehensive numerical analysis that explains the basis of the proposed plant water demands, the proposed groundwater and surface water withdrawal rates, and the analysis of storage volumes, is presented as Appendix 5. A mass balance hydrograph analysis was performed to evaluate potential alternative source scenarios, with the essential goal of meeting the plant's water demands at all times.

National Weather Service data were used to determine wet bulb temperature and relative humidity for every day that data are available, in order to calculate the daily water demands. 63 years of record, from 1947 through 2009, are available. Pages 1 and 2 of Appendix 5 present water demand rates for the biomass plant's entire process water needs. The portion of this demand that would be met by the well was determined based on the mass balance analysis that evaluated daily streamflow and demand.

USGS streamflow gauge data from the Williamstown, MA station were used to determine the amount of streamflow at the intake site for every day during the period of record for the National Weather Service data. The data were adjusted for the differences in watershed area between the USGS station and the project site.

The mass balance analysis computer model determined daily demand, river water availability, well water availability, and storage volumes for every day over the 63 year period of record. Statistical analysis of the 63 years of daily data was performed in order to evaluate the results. Various scenarios were evaluated, including several combinations of different storage volumes, well yields, and streamflow limitations.

Page 3 of Appendix 5 presents a summary of the results. Results from individual scenarios follow and include a detailed tabulation of the results, and hydrographs depicting the streamflow, river withdrawal, well production, storage, plant usage, and demand.

Scenario 1

Scenario 1 consists of a river intake, no withdrawal when streamflows are less than ABF, no well, and no storage. On average, 78% of the annual water needs would be met. Plant demand would be fully met in only 3% of all years. Therefore this scenario is unacceptable. See pages 4 to 8 of Appendix 5.

Scenario 2

Scenario 2 consists of a river intake, withdrawal when streamflows are less than 89 cfs, and no storage. Plant demand would be fully met in all years and the withdrawal would not affect aquatic habitat or biota. Therefore this scenario is acceptable. See pages 9 to 13 of Appendix 5.

Scenario 3

Scenario 3 consists of a river intake, no withdrawal when streamflows are less than 89 cfs, no well, and the 12 Mgal of storage that would be available in the existing on-site manmade pond. On average, 93% of the annual water needs would be met. Plant demand would be fully met in only 33% of all years. Therefore this scenario is unacceptable. See pages 14 to 18 of Appendix 5.

Scenario 4

Scenario 4 consists of a river intake, no withdrawal when streamflows are less than 89 cfs, no well, and the amount of storage that would be needed to enable demand to be met at all times. Plant demand would be fully met in all years. However, the requisite 83.4 Mgal of storage could not be constructed at the site and is not feasible. Therefore this scenario is unacceptable. See pages 19 to 23 of Appendix 5.
Scenario 5

Scenario 5 consists of a river intake, no withdrawal when streamflows are less than 89 cfs, use of the on-site well at up to 500 gpm when Hoosic River flows are less than 89 cfs, and no storage. This scenario preferentially relies on the river, and uses the well as a water source only when streamflows are below 89 cfs, or when only a portion of demand can be met with the River intake.

Plant demand would be fully met in all years. Therefore, this scenario is acceptable.

Well water would comprise 22 percent of plant usage on average. Thus, the average rate of groundwater withdrawal would be 37.6 Mgal per year, equal to 103,080 gpd or 72 gallons per minute, and a Groundwater Withdrawal Permit would be required. In a peak well usage year, the well would need to provide 58 percent of the water used in a year by the biomass plant, equal to 102 Mgal per year, 279,500 gpd, or 194 gpm. At a peak monthly rate, the well would be called upon to produce 630,000 gpd, equal to 438 gpm. In some years, the well would not need to be used at all. See pages 24 to 28 of Appendix 5.

Scenario 6

To evaluate options for using a well without exceeding the 57,600 gpd threshold for needing a groundwater withdrawal permit, scenario 6 consists of a river intake, no withdrawal when streamflows are less than 89 cfs, use of the well for up to 39 gpm, and no storage. On average, 81 percent of the annual water needs would be met. Plant demand would be fully met in only 3 percent of all years. Therefore this scenario is unacceptable. See pages 29 through 33 of Appendix 5.

Scenario 7

To further evaluate options for using a well without exceeding the 57,600 gpd threshold for needing a groundwater withdrawal permit, scenario 7 consists of a river intake, no withdrawal when streamflows are less than 89 cfs, use of the well for up to 39 gpm, and the 12 Mgal of storage in the existing manmade pond on site. On average, 95% of the

annual water needs would be met. Plant demand would be fully met in only 40% of all years. Therefore, this scenario is unacceptable. See pages 34 through 38 of Appendix 5.

Scenario 8

To further evaluate options for using a well without exceeding the 57,600 gpd threshold for needing a groundwater withdrawal permit, scenario 8 consists of a river intake, no withdrawal when streamflows are less than 89 cfs, use of the well for up to 39 gpm, and the amount of storage that would be needed to enable demand to be met at all times. Plant demand would be fully met in all years. However, the requisite 73 Mgal of storage could not be constructed at the site and is not feasible. Therefore this scenario is unacceptable. See pages 39 to 43 of Appendix 5.

Mass Balance Hydrograph Results Summary

The two acceptable scenarios are #2 and #5. Scenario #2, with no minimum streamflow limit because the withdrawals at no more than 465.2 gpm have no impact to the biota or habitat in the Hoosic River in accordance with the federal streamflow policy, would meet the biomass plant's water needs at all times. Scenario #5, which relies upon the onsite well when streamflows are low, also would meet the biomass plant's water needs at all times but would require up to 58 percent of the plant's water supply to come from the well, which is less suitable for the plant than the river water.

5.2 Alternatives Analysis Summary

The alternatives analysis has determined that the preferred alternative source is the Hoosic River, and that the well is only being proposed as a backup source of water because it might not be possible to withdraw from the river when streamflows are low. Connection to a public community water supply system is not an available option. Storage of pumped river water in surface impoundments for use in place of well water, to supply the plant when the river cannot be used directly, is not a viable option because insufficient volumes of water can be stored on the site and because of water quality

problems that develop in stagnant water. Use of the well may be further reduced below the proposed annual average withdrawal rate of 72 gpm as a backup source, if Federal approval of greater Hoosic River water usage is issued.

6.0 Source Testing Proposal

The proposed pumping test would be conducted at a withdrawal rate of approximately 500 gpm and would last for 7 days (168 hours). All water wells within a 3,000-foot radius would be monitored, owner permission pending. Additional water level measurement would occur at existing and proposed monitoring wells and piezometers in the unconfined water table, in the gravel aquifer, and in nearby surface waters. Pre-test background monitoring would be conducted at all monitoring locations for at least 48 hours to establish baseline conditions. Post-test monitoring would be conducted for 48 hours to monitor water level recovery.

The test would be conducted during the winter of 2010-2011, when frozen ground would minimize recharge to the aquifer, providing conservative test conditions. Precipitation and air temperature would be monitored throughout the pre-test, test, and recovery periods using a recording weather station to be placed on the site. The amount of snowpack on the ground also would be monitored to assess snowmelt and recharge rates. Flow in the Hoosic River would be monitored by the USGS gauge upstream in Williamstown MA (#0133250) to assess regional hydrologic trends.

Automatic dataloggers will be used to measure water levels in the wells, and will be confirmed by periodic manual measurements. Water levels in the production well, monitored water supply wells, piezometers, and monitoring wells would be measured to the nearest 1/100th of a foot, via manual measurement or automated data logger.

6.1 Production Well Testing

Background monitoring would consist of water level monitoring in the project well for at least 48 hours prior to the 7-day pumping test. Water levels would be recorded using an automatic datalogger and pressure transducer.

The constant discharge test would be conducted for 7 days (168 hours) at a constant pumping rate of approximately 500 gpm, which exceeds the proposed peak withdrawal rate of 462.5 gpm, providing a margin of safety. The existing 40-hp vertical turbine pump would be used for the test. A calibrated water meter, rated to 600 gpm, will be used to determine well discharge during the pumping test. Due to freezing concerns, an orifice tube will not be used. As a backup flow measurement device, a calibrated weir will be installed at the discharge point and monitored throughout the test. The weir is not expected to freeze due to the high flow rate.

During the constant discharge test, the pumping rate would be kept steady using the existing valves in the wellhouse. Measurements of water level and discharge rate would be made at the intervals recommended in the Draft Groundwater Withdrawal Reporting and Permitting Rules (2010), §24-509 (b)(5)(C).

Water from the pumping test would be conveyed by pipe or hose away from the wellhead and discharged adjacent to the Hoosic River in a manner that would minimize erosion and potential aquifer recharge. VHB personnel would oversee the management of discharged test water to ensure the maintenance of surface water quality.

Recovery monitoring would commence immediately when the constant discharge test ends. Measurements of water level would be made at the intervals recommended in the Draft Groundwater Withdrawal Reporting and Permitting Rules (2010), §24-509 (b)(6)(A). The recovery monitoring would be conducted until the water levels in the project well have recovered to their pre-test levels, or for up to two days.

6.2 Interference Monitoring

Once the proposed source testing program has been approved, all landowners within 3,000 feet of the project will be provided with a monitoring permission form, well questionnaire, and an explanatory letter. This monitoring would be well above and beyond the Draft Rule's directive to monitor the water sources within the estimated area of influence, and is being proposed voluntarily due to the public concern that was expressed during the informational hearing. The list of landowners within 3,000 feet is in Appendix 4, pages 8 and 9. A sample informational letter and monitoring permission request are provided in Appendix 4, pages 10 through 15.

VHB will conduct background measurements of water levels for two days prior to the pump test in the production well and in all the observation wells. Recovery measurements will be conducted for two days after the end of the pumping test, or until the production well has fully recovered, whichever comes first. Measurements of water level would be made at the intervals recommended in the Draft Groundwater Withdrawal Reporting and Permitting Rules (2010), §24-509 (b)(5)(D).

The testing is not anticipated to cause any impact to a water supply well, because no wells are located within the project well's estimated area of influence. In the unlikely event that a well cannot supply its owner with sufficient water during the test, the following corrective measures would take place. First, the cause of the problem would be investigated to determine if a mechanical or pump problem, wiring or electrical problem, or other issue unrelated to the testing was responsible. Water levels measured in the affected well would be evaluated to determine if the testing has caused a loss of supply. Problems that occasionally occur due to installation of monitoring equipment, such as damage to the pump wiring, or a clogged whole-house water filter due to sediment stirred up by sounding tube installation, would be investigated and fixed at no cost to the well owner. In the highly unlikely event that the test was causing excessive drawdown in the affected well, the test would be discontinued.

6.3 Special Studies

Special studies would be performed to assess water resources and hydrology at the site.

Piezometers would be installed at the edge of the manmade pond north of the well, to assess the degree of hydrologic communication between the gravel aquifer and the pond. These piezometers would be installed along the pond's edge at the closest point to the well. A pair of piezometers, one shallow (approximately two feet) and one deep (approximately five feet), will be installed. Measurements of water levels in the piezometers will provide information regarding vertical gradients in the aquifer. Together with the pond stage data, this information will be used to determine if the pumping of the well affects vertical gradients in the aquifer or water levels in the pond. The piezometers will be monitored to evaluate the possible presence of a hydraulic connection between the gravel aquifer and the overburden water table, to determine the hydraulic gradient in the overburden, and to assess whether the gradient is affected by the pumping of the well. Water levels in the piezometers and in the pond itself would be monitored at the same intervals and duration as the project well and water sources. Refer to the Well Testing & Water Resources Map on page 5 of Appendix 4 for proposed piezometer locations.

Piezometers would be installed at the edge of the Hoosic River to assess the degree of hydrologic communication between the gravel aquifer and the river. These piezometers would be installed along the river at the closest point to the well. A pair of piezometers, one shallow (approximately two feet) and one deep (approximately five feet), will be installed. Measurements of water levels in the piezometers will provide information regarding vertical gradients in the aquifer. Together with the pond stage data, this information will be used to determine if the pumping of the well affects vertical gradients in the apuifer or water levels in the piezometers will be monitored to evaluate the possible presence of a hydraulic connection between the gravel aquifer and the overburden water table, to determine the hydraulic gradient in the overburden, and to assess whether the gradient is affected by the pumping of the well. Water levels in the

piezometers and in the river itself would be monitored at the same intervals and duration as the project well and water sources. Refer to the Well Testing & Water Resources Map on page 5 of Appendix 4 for proposed piezometer locations.

Four monitoring wells (MW-7, MW-8, MW-9, and MW-10) are proposed to be installed into the gravel aquifer for the purpose of accurately refining the extent of the estimated area of influence. A hollow-stem auger drilling rig would be used to install 2-inch diameter monitoring wells into the gravel aquifer, at a depth of approximately 50 to 60 feet below ground surface. The 1994 pumping test involved six monitoring wells that had been installed in the unconfined water table above the clay layer, but no observation wells in the gravel aquifer itself. The addition of the four gravel aquifer monitoring wells will enable a more accurate delineation of the gravel well's area of influence. The existing monitor wells in the water table at the site also would be monitored during the proposed testing. Water levels in all monitoring wells would be monitored at the same intervals and duration as the project well and water sources. Refer to the Well Testing & Water Resources Map on page 5 of Appendix 4 for proposed well locations.

6.4 Data Analysis

Long-term safe yield will be calculated for the well based on data from the pump test using at least two standard hydrogeologic methodologies. The specific methods to be used will be determined based on the behavior of the project well and the monitoring wells, and by comparison of the data to type curves. Yield will be calculated for 180 days of usage without recharge.

Interference to all wells in the monitoring radius will be calculated based on the pump test results. Long-term interference will be calculated using standard methods based on the recommended safe yield of the project well, and the aquifer parameters measured at each of the observation wells. For any well affected by the project well, the affected

well's ability to meet its owner's water needs will be calculated for long term pumping conditions.

The area of influence for the project well will be delineated based on aquifer parameters measured from the pump test and the responses of the observation wells. The extent of the well's zone of influence will be calculated for the design pumping conditions using standard methods, and distance-drawdown plots of the test data will be evaluated, so that the delineation will represent long-term usage conditions.

The initial conceptual model presented in section 2.7 above will be refined based on the test data. A final report presenting the test data, calculations, area of influence, conceptual model, and the results of the yield and interference analysis will be submitted to the Vermont DEC, Water Supply Division.

7.0 Conclusions and Recommendations

The proposed use of the existing gravel packed well at the former Green Mountain Race Track as a backup supply of process water for the proposed Beaver Wood Energy Pownal biomass facility is expected to meet the requirements of Act 199 for withdrawal of groundwater. A testing program has been proposed to measure the long term safe yield of the well, to delineate its area of influence and recharge area, and to predict its long term affects, if any, to surrounding water sources and surface waters. No water supply wells or significant wetlands are present within the project well's estimated area of influence, which has been delineated based on a rigorous hydrologic test conducted on the well that included pumping for 7 days at 514 gallons per minute. The proposed withdrawal would use water at an annual average rate of 72 gpm, and a peak daily rate of 465 gpm. Therefore, it is expected that the proposed withdrawal is a safe yield that will not cause any adverse effects to other water resources.

An initial conceptual hydrologic model indicates that the proposed withdrawal is not likely to cause adverse affects to any existing wells, water sources, wetlands, or surface waters; the withdrawal will be planned for efficient water use and will meet Vermont standards for safe groundwater yield, and will conform to the Pownal Town Plan and the Bennington County Regional Plan.

References

Bruno Associates, 2010. Beaver Wood Energy Pownal, LLC: Public NTNC Source and Construction Permit Application. October 25, 2010.

Driscoll, F.G., 1986. Groundwater and Wells. Johnson Screens, St. Paul MN.

LAG (1995). Green Mountain Race Track: 7-day Pump Test of the Production Well. Lincoln Applied Geology, Inc. February 20, 1995.

Riggs, H.C., 1972, "Techniques Of Water Resources Investigations Of The USGS, Chapter B1: Low-Flow Investigations"

Todd, D.K., 1980. Groundwater Hydrology. John Wiley & Sons, New York.

Vermont Geological Survey, 1961. Centennial Geologic Map of Vermont.

Vermont Geological Survey, 2008. Surficial Geologic Map of Vermont.

Vermont Agency of Natural Resources: Department of Environmental Conservation (1982). Environmental Protection Rules, Chapter 11: Underground Injection Control Rule.

Vermont Agency of Natural Resources: Agency Procedure for Determining Acceptable Minimum Streamflows (7/14/1993)

Vermont Agency of Natural Resources: Department of Environmental Conservation, Water Supply Division (1997). Protecting Public Water Sources in Vermont.

Vermont Agency of Natural Resources: Department of Environmental Conservation, Water Supply Division (2002). Alta Gardens Estates MHP (WSID 5628) Delineated Source Protection Area.

Vermont Agency of Natural Resources: Department of Environmental Conservation, Water Supply Division (2005), Environmental Protection Rules, Water Supply Rule, Chapter 21.

Vermont Agency of Natural Resources: Department of Environmental Conservation, Water Supply Division (2010). Environmental Protection Rules, Chapter 24: Groundwater Withdrawal Reporting and Permitting Rules. Draft September 20, 2010.

Vermont Agency of Natural Resources: Department of Environmental Conservation, Water Quality Division (2010). Vermont Wetland Rules.

VHB, 2010. Gravel Well: Source Protection Plan - Beaver Wood Energy Pownal, LLC. WSID #2585. October 8, 2010.

\\VTDATA\Projects\57407.03 BWE Pownal Permitting\reports\GW_withdrawal_application\application.doc

APPENDIX 1

VERMONT

APPLICATION

ENVIRONMENTAL CONSERVATION

Water Supply Division

GROUNDWATER WITHDRAWAL PERMIT APPLICATION

This application initiates the Water Supply Division's review and permitting process for source development of a Groundwater Source to serve a Proposed or Existing Industrial/Commercial facility withdrawing greater than 57,600 gpd. Drinking water supply sources are required to obtain a separate permit.

A site visit will be scheduled following receipt of a complete application. Following construction of the source the applicant shall submit a source testing proposal (on a form provided by the Secretary) and the applicant and/or applicant's consultant shall attend a public meeting to address public concerns. Following the public meeting and after receiving state approval for the source testing proposal, the applicant shall conduct source testing and address undue adverse impact concerns. The applicant shall submit a source evaluation report that addresses these concerns. Once the applicant satisfies all administrative and technical requirements the state will issue a Groundwater Withdrawal Permit.

This line for WSD use only:	WSD project ID #	Associated WSID #	Code	Date
For staff u	use WSD codes: C = completed	NR = not required IR = info. require	d TBD = to be de	termined

1. Town: Pownal	
2. Facility name: Beaver Wood Energy Pownal, LLC	
3. Applicant name: Tom Emero	
Mailing address: 230 West Street	
Rutland, VT 05701	
Daytime phone: (508) 321-1181 e-mail: tomemero@gmail.com	
4. Source owner (if different from applicant): Progress Partners LTD., attn: Richard Hein	
Mailing address: <u>132 Larchmont Ave</u>	
Larchmont, NY 10538	
Daytime phone: <u>914-907-6030</u> e-mail: <u>rfhdesign@verizon.net</u>	
5. Hydrogeologist: Meddie Perry, CGWP	
Mailing address: 7056 US Route 7, PO Box 120	
North Ferrisburgh, VT 05473	
Daytime phone: (802) 425-7788 ext 6454 e-mail: mperry@vhb.com	

6. Describe the purpose of the grou	ndwater withdrawal (attach): <u>attached</u>	
7. Time frame:	Peak amount:	Mean amount:	
Estimated daily withdrawal:	<u>669,900_g</u> allons per day	<u>103,080</u> gallons per day	
Estimated monthly withdrawal:	630,000_gallons per day	103,080 gallons per day	
Estimated yearly withdrawal:	279,500_gallons per day	<u>103,080</u> gallons per day	
8. Requested withdrawal rate: _465	5.2 gallons per minute		

9. Describe the alternate means considered for satisfying the stated purpose of the water	
withdrawal (attach): <u>attached</u>	
10. Describe how the withdrawal is planned in a fashion that provides for efficient use of	
the water (attach): attached	

11. Source of the proposed withdrawal (check applicable type): Bedrock drilled Well	
Spring Dug well <u>X Unconsolidated drilled well</u> Other (describe):	
12. Provide detailed plans of the proposed source construction (attach): attached	
13. a) Identify proposed and existing withdrawal location(s) on a USGS map; attached	

10/19/2010

- • • • •

b) Identify the withdrawal locations on a map showing the subject parcel and any	
adjoining parcels within 100 feet of the withdrawal point with any required isolation	
distances measured from the withdrawal point and showing the location of associated	
protective measures for protecting the source from adverse impacts (attach); attache	at İ
14. GPS location(s) of the proposed withdrawal point/s), and of any existing water source	e
for the project shall use the NAD 83 format (report in Degrees Minutes and	~
Seconds) for the horizontal CDS coordinates (attach): attached	
Seconds / for the honzontal of 5 coordinates (duach), <u>augureu</u>	
15. Identity benchmarks and elevations for vertical references and identity their locations	
on an appropriately scaled map (attach): attached	
16. Describe the place and manner of the return flow for the withdrawn water: attached	
If applicable, identify the return flow location(s) on an appropriately scaled map:	
attached	
Estimated yearly amount of water that will not be returned to the watershed where th	e
proposed withdrawal is located: <u>33,240 average daily</u> Gallons	
to Taxantan of estad and water tipl contaction to an any any still beneficial and the still of an an	
19. Inventory of actual and potential contaminant sources, with locations identified on an	
appropriately scaled map (attach); attached	
20. Inventory of water resources and uses (such as drinking water supply sources,	
significant wetlands, surface waters, other water withdrawals and uses), with location	5
identified on the same map as the inventory of contaminant sources: attached	
At Develop a water budget for the amiteda's the with developing in this end on the start of	
2.1. Develop a water budget for the aquiter(s) the withdrawal is taking place from (attach) attached	
22 Develop a concentral hydrogeologic model of the withdrawal considering the water	
budget developed (attach); attached	
22 Delineate the potential area of influence chaulta preavisting conditions and the	
conditions under empored maximum withdrawal in both plan view and profile view at	
- conductes and proposed maximum muturatival at court plan view and profile view at	
an appropriate scale, based on the conception hydrogeologic model (deact): deached	
24. Describe now the area was deimeated using the model (attach): attached	_
25. Provide a description of the withdrawal effects on each of the contamination sources,	
water resources, water uses, and long term response of the aquifer (attach): attached	<u></u>
26. Describe the mitigation measures to be implemented to remedy any expected undue	
adverse impacts (attach): attached	<u>L</u>
27. Attach a signed and dated certification by the applicant that they have met the pre-	1
annlication nublic informational meeting requirements attached	
approaces passe an entracement includes a second second with the second second with the second se	~
to an a signed and dated certain about by the applicant that the proposed with drawal t	°
in contormance with the regional plan adopted for the area in which the proposed	
with crawal is located, and that it is in conformance with the municipal plan adopted to	r
the municipality that the proposed withorawal is located within: attached	·····
29. If applicable, the previously assigned permitted withdrawal volumes, established safe	
yields, or the known flow or withdrawal rates of the applicant's other water sources on	
this or contiguous parcels (attach): attached	
30. Attach a list of all persons (name, address, and phone number) which are required to	
be notified of the proposed permit: attached	
H. Attach for (normant by chark or manay order made anytable to the Chate of Man-atta	1 1
or when the flat of cherry of money order mane bayable to the state of vermonic).	

recognize that by signing this application I am giving consent to employees of the State t	o enter the
subject property for the purpose of processing this application.	,
	1
C-10/21	110
Date / / /	Lee
ing nature or the Appingant	1
KIKK not 10/19	110
identified the Councilicant (Owner of Water Source if different from the Applicant)	
ивисанда от цистооторрикани, соитися от иканся расинску и акисисти, поят цистири(ВПС) / . Италовав	714
4 #**## # V	24 **

Beaver Wood Energy Pownal, LLC. Pownal, Vermont Project Location Map

October 12, 2010

400 0

800

800 Feet Prepared by: MJS/LBS Sources: Background - USDA NAIP Orthophoto - Bennington (2009); Streams and Waterbodies from Vt. Hydrography dataset and VCGI (2008); Contours from VHB (2010); Public Water Source from VTANR (2010); parcel boundaries obtained from Bennington County Regional Planning Commission (2006); Roads obtained from VTrans (2008); Source Site Plan provided by Bruno Associates (9/2/2010).

WIIB Vanasse Hangen Brustlin, Inc.

MEMORANDUM OF LEASE

Notice is hereby given of a certain Lease Agreement entered into on April 2, 2010 by and between **PROGRESS PARTNERS, LTD,** a Vermont corporation with an address of 158 Westmoreland Avenue, White Plains, New York (hereinafter referred to as "Lessor"), and **BEAVER WOOD ENERGY POWNAL, LLC,** a Delaware Limited Liability Company with an address of 82 Village Street, Medway, Massachusetts (hereinafter referred to as "Lessee").

The aforementioned Lease Agreement contains, among other provisions, the following:

- 1. <u>Initial Term</u>. The Initial Term of the Lease begins on April 2, 2010 and ends on October 1, 2010.
- 2. <u>Second Term</u>. At the end of the Initial Term, Lessee, in its sole discretion, shall have the right to extend the Lease for two twelve month periods, the first beginning at the end of the Initial Term and ending October 1, 2011 and the second beginning October 2, 2011 and ending October 1, 2012, (collectively, the "Second Term"), by providing Lessor five (5) days written notice prior to the expiration of any such period.
- 3. <u>Extended Second Term</u>. By providing thirty (30) days written notice prior to the expiration of the Second Term, Lessee, in its sole discretion, shall have the right to extend the Second Term for one (1) additional six (6) month term, (the "Extended Second Term"). In the event Lessee is prohibited from starting construction because of litigation or a matter outside of Lessee's control, Lessee shall have the right to extend the Second Term for up to three (3) additional one (1) year terms, each of which shall constitute an Extended Second Term.
- 4. <u>Construction Term</u>. By providing thirty (30) days written notice prior to the expiration of the Second Term (extended or otherwise), Lessee, in its sole discretion, shall have the right to extend the Lease for a twenty eight (28) month construction period (the "Construction Term").
- 5. The Premises consist of an approximately 45 acre portion of a lot consisting of 147 acres of land and premises located on Route 7 in the Town of Pownal, County of Bennington and State of Vermont, (formerly known as the Green Mountain Race Track), and more particularly described in a deed from <u>Pretacos</u> to Lessor dated <u>MOV. 29.1994</u>, recorded at Book <u>MOV</u>, Page of the Town of Pownal Land Records (the "Premises").
- 6. The terms and conditions of the Lease Agreement are incorporated herein by reference.
- 7. Nothing contained in this Memorandum of Lease shall constitute an amendment, change or revision of the terms and provisions of said Lease Agreement.

1 07 0 D 4

Dated at White Plains, NY, this 15th day of April, 2010

PROGRESS PARTN LTD: Frank Cantatore, Partner

STATE OF New YOrk Westchester COUNTY, ss.

At <u>white flaim Westche</u> County, this <u>19</u> day of April, 2010, personally appeared Frank Cantatore, Partner of **PROGRESS PARTNERS, LTD.**, by Resolution of the Corporation, and he acknowledged this instrument, by him sealed and subscribed, to be his free act and deed and the free act and deed of **PROGRESS PARTNERS, LTD.**

> Serafina E Russeli Notary Public, State of New York No. 01RU6157754 Qualified in Westchester County Commission Exp. Dec. 11, 20,40

Before me,

Diofina E. Russell

BEAVER WOOD ENERGY POWNAL, LLC:

By

Thomas Emero, Managing Member

STATE OF M455 Norfold COUNTY, ss.

At <u>Marfolk</u> County. this day of April, 2010, personally appeared Thomas Ernero, Managing Member of **BEAVER WOOD ENERGY POWNAL, LLC**, and he acknowledged this instrument, by him sealed and subscribed, to be his free act and deed and the free act and deed of **BEAVER WOOD ENERGY POWNAL, LLC**.

A A A A A A A A A A A A A A A A A A A	,
DEBORAH A. ANDERSON Notary Public commonwealth of Massachusells Commission Expires Jun 13, 2014	
****	•

Before me. Notary Public

Pownal, VT Town Clerk's Office Received for Record 2 o'clock minutes and recorded in Book Attest: < Karen N.Burrington, Town C

Notice of Application for Groundwater Withdrawal Permit (Act 199)

PLEASE TAKE NOTE that Beaver Wood Energy Pownal, LLC has applied for a permit application for a Groundwater Withdrawal Permit from the Vermont Agency of Natural Resources, in order to utilize an existing drilled well as a backup source of water for a proposed biomass energy plant at the former race track site in Pownal. The proposed withdrawal rate is estimated to be 72 gallons per minute on average, and 465 gpm on peak days.

The proposed withdrawal is located at the former Green Mountain Race Track on Lovett Cemetery Road in Pownal. A map of the source location and its estimated Area of Influence is attached.

Full copies of the application may be reviewed at the Pownal Town Office and the Vermont Water Supply Division office in Waterbury. A public comment period is open for 30 days from the date of the application, ending on November 24, 2010. Comments shall be directed to the Water Supply Division at the address below.

<u>Contact information:</u> Dennis Nealon Vermont ANR, Water Supply Division 103 South Main Street Old Pantry Building Waterbury, VT 05671-0403

Beaver Wood Energy Pownal, LLC. Public Notification for Groundwater Withdrawal Permit

- <u>Pownal Town Clerk</u> Karen J. Burrington Town of Pownal VT P.O. Box 411 Pownal, Vermont 05261
- <u>Pownal Selectboard</u>
 Town of Pownal VT Selectboard
 P.O. Box 411
 Pownal, Vermont 05261
- <u>Pownal Conservation Commission</u> Town of Pownal VT Conservation Commission P.O. Box 411 Pownal, Vermont 05261
- Clerks of adjoining Vermont municipalities (see location map, page 10 of this Appendix)

<u>Bennington Town Clerk</u>: Timothy R. Corcoran 205 South Street Bennington, VT 05201 (802) 442-1037 tcorcoran@bennington.com

<u>Woodford Town Clerk</u>: Ron Higgins 1391 VT RTE 9 Woodford, VT 05201 (802)442-4816 woodfordvt@comcast.net

<u>Stamford Town Clerk</u>: Nancy L. Bushika 986 Main Road Stamford, VT 05352 (802) 694-1361 stamfdvt@sover.net

- <u>Bennington Regional Planning Commission</u> Bennington County Regional Commission 111 South Street, Suite 203 Bennington, Vermont 05201
- <u>All other active Public Water Systems in Pownal</u> (see map, page 10 of this Appendix and list on page 11.)
- <u>Landowners and Mobile Home Park residents within the project well's Estimated</u> <u>Area of Influence</u> (see map, page 12 of this appendix) Progress Partners, Ltd
 158 Westmoreland Ave. White Plains, NY 10606
- <u>Voluntarily, notification will be sent to all landowners within 3,000 feet of the well,</u> <u>even if beyond the Estimated Area of Influence</u> (see map, page 13 of this Appendix)
- <u>Voluntarily, notification will be sent to interested parties who have requested to be</u> <u>informed</u> (see list, page 15 of this Appendix)

 Legend Active Public Water Source Former Public Water Source: Currently Inactive Town Boundary Beaver Wood Project Area Groundwater Source Protection Area 	Beaver Powna	Wood Powr l Public Oct	Energy I Ial, Vern c Water S ober 5, 202	Pownal, LLC. 10nt Sources Map 10	Sources: Background - USDA NAIP Orthophoto - Bennington (2009); Streams and Waterbodies from Vt. Hydrography dataset and VCGI (2008); Public Water Source from VTANR (2010); Groundwater SPAs obtained from Roads obtained from VTrans (2008); Town Boundary from VTANR Environmental Interest Locator (2010), VCGI (2008). Project Parcel Boundary from Bennington County Regional Planning Commission (2006).
Streams (VHD)	6,000	3,000	0	6,000	
- Roads				Feet	VIIB Vanasse Hangen Brustlin, Inc.
F: \57407.03 BWE Pownal Permitting \GIS \Project \Pownal_WaterSources_ortho.mxd				Prepared by: MJS	-

Beaver Wood Energy Pownal, LLC.

Public Notification for Groundwater Withdrawal Permit

Current Public Water Systems in Pownal

# DISM	System Name	Type of System	Number of Water Sources in Pownal	Types of Water Sources	Owner Name	Owner Mailing Address	Owner Phone Number
1269	Jaeger Haus Restaurant & Pizzeria	TNC	L	Well Point	Roger Szekeres	2848 Route 7, Pownal, VT 05261	823-5200
4076	Ladd Brook Motor Inn	TNC	2	Bedrock Well and Dug Well	Paul Kamal	Route 7, Pownal, VT 05261	261-5233
5016	Bennington Water Department	PCWS	٢	Pond	Town of Bennington	205 South St., Bennington, VT 05201	442-1037
5026	Lampman Water System	PCWS	2	Spring and Bedrock Well	Scott Lampman	PO Box 45, Pownal, VT 05261	823-5222
5027	Royal Pine Villa	PCWS	3	Bedrock Well	Roy Leon	PO Box 168, Pownal, VT 05261	442-5079
5628	Alta Gardens Estates	PCWS	L	Bedrock Well	Alta Gardens	101 Tremont St, Barre, VT 05641	476-7683
5645	Evergreen MHP	PCWS	F	Gravel Well	Blake Marnetta	2346 Mason Hill Rd., Pownal, VT 05261	823-5036
6665	Pownal Elementary School	NTNC	-	Bedrock Well	Pownal Elementary School	94 Schoolhouse Rd, Pownal, VT 05261	823-7333
8152	Pine Hollow Campground	TNC	1	Bedrock Well	Ronald Luazon	342 Pine HollowRd., Pownal, VT 05261	823-5569
20734	Pownal FD 2	PCWS	-	Gravel Well	Alex Densamsonow	PO Box 350, Pownal, VT 05261	823-9351
20904	Oak Hill Children's Center Pownal Preschool	NTNC	1	Bedrock Well (221 ft)	Gail Tanzman	PO Box 152, Pownal, VT 05261	823-4626
21059	American Legion Post 90	TNC	-	Bedrock Well	American Legion	PO Box 35, Pownal, VT 05261	823-7839

Former Public Water Systems: Not current active

WSID #	System Name	Type of System	Number of Water Sources in Pownal	Types of Water Sources
5479	Pownal Tannery Reservoir	PCWS	L	Brook Impoundment
8101	Shady Acres Campground	TNC	1	Bedrock Well

Beaver Wood Energy Pownal, LLC
3000-Foot Monitoring Radius:
Well Testing and Parcel Map

57407.03\GIS\Project\Parœls_PrivateWells.mxd

1,000

Feet
Prepared by: MJS

1,000

VHB Vanasse Hangen Brustlin, Inc.

Beaver Wood Energy Pownal LLC. Groundwater Withdrawal Testing: Existing Gravel Well at the Green Mtn Race Track Address List: All Landowners Within 3,000 Feet of the Project Well VHB 10/15/2010

Parcel #	Site Address	Owner	Mailing A	Address		
15-346-1	Post Drive	Alta Gardens Estates	101 Tremont Street	Barre	VT	05641-3507
15-346-2	41 Post Drive	Walter Adams	PO Box 62	Pownal	VT	05261-0062
15-346-2.1	61 Post Drive	Stacey Adams	PO Box 534	Pownal	VT	05261-0534
15-42-1	31 Montgomery Road	Richard Dorman	31 Montgomery Road	Pownal	VT	05261-9458
15-42-2	63 Montgomery Road	Linda Burlak	63 Montgomery Road	Pownal	VT	05261-9458
15-42-3	79 Montgomery Road	Barbara Harwood	79 Montgomery Road	Pownal	VT	05261-9458
15-63-2	67 Valley View Drive	Cheryl Palmer	67 Valley View Drive	Pownal	VT	05261-9464
15-63-3	91 Valley View Drive	Mark Atherton	91 Valley View Drive	Pownal	VT	05621-9464
15-63-5	101 Valley View Drive	Robert Wilcox	101 Valley View Drive	Pownal	VT	05261-9463
15-63-6	105 Valley View Drive	Harry Beals, Jr.	105 Valley View Drive	Pownal	VT	05261-9463
15-65-1	87 B Hill Road	Bishop Gary	PO Box 58	Pownal	VT	05261-0058
15-65-1.1	96 B Hill Road	Michael Morneault	PO Box 275	Pownal	VT	05261-0275
15-65-10	50 Oak Drive	David Hall	PO Box 244	Pownal	VT	05261-0244
15-65-11	86 Oak Drive	Andrew Dequasie	PO Box 211	Pownal	VT	05261-0211
15-65-12	83 Oak Drive	Brian Barcomb	PO Box 336	Pownal	VT	05261-0336
15-65-13	90 Oak Drive	James Carey	PO Box 7	Pownal	VT	05261-0007
15-65-14	183 Oak Drive	Robert Gallese	PO Box 402	Pownal	VT	05261-0402
15-65-2	320 B Hill Road	Robert Clermont	320 B Hill Road	Pownal	VT	05261
15-65-2.1	B Hill Road	Marjorie Hurley	457 Middle Pownal Road	Pownal	VT	05261
15-65-3	369 B Hill Road	John Werner	PO Box 28	Pownal	VT	05261-0028
15-65-4	364 B Hill Road	Jean Hall	PO Box 144	Pownal	VT	05261-0144
15-65-5	B Hill Road	Anthony Iannuccillo	5 Wood Dale Road	Ballston Lake	NY	12019-9359
15-65-6	382 B Hill Road	George Klemm	111 North Street	Williamstown	VT	01267-2042
15-65-7	377 B Hill Road	James Cirillo	PO Box 47	Pownal	VT	05261-0047
15-65-8	379 B Hill Road	John Holovach	PO Box 15	Pownal	VT	05261-0015
15-65-9	B Hill Road	Vincent Freccia, Jr.	11 Westwood Place	Stamford	VT	06902-1419
15-9-19	498 Northest Hill Road	Terry Pollert	498 Northwest Hill Road	Pownal	VT	05261-9435
15-9-20	555 Northwest Hill Road	Janet Schutzman	555 Northwest Hill Road	Pownal	VT	05261-9451
15-9-21	598 Northwest Hill Road	Norman Chaffee	598 Northwest Hill Road	Pownal	VT	05261-9436
15-9-23	652 Northwest Hill Road	Bert Atherton	652 Northwest Hill Road	Pownal	VT	05261-9453
15-9-24	719 Montgomery Road	Irving Tanzman	719 Northwest Hill Road	Pownal	VT	05261-9450
15-US7-25	6275 Route 7	Keith Pedercini	PO Box 167	Pownal	VT	05261-0167
15-US7-26	6213 Route 7	Gary Jelley	PO Box 176	North Pownal	VT	05260-0176
15-US7-27	23 B Hill Road	Ronald George	PO Box 98	North Pownal	VT	05260-0098
15-US7-29	6185 Route 7	James Winchester	PO Box 22	Pownal	VT	05261-0022
		Millard Mobile Home Park,				
15-US7-30	Route 7	LLC.	34 Ashland Street	North Adams	MA	01247
6-44-3	180 Krum Road	Michael Hartman	180 Krum Road	Pownal	VT	05261-9461
6-44-4	242 Krum Road	Mark Miller	242 Krum Road	Pownal	VT	05261-9461
6-9-26	824 Northwest Hill Road	Deborah Nicholas	PO Box 178	Pownal	VT	05261-0178
6-9-28	Northwest Hill Road	David Walsh	136 C Shore Road	Peabody	MA	01960-3062
6-9-29	1104 Northwest Hill Road	Kenneth Held	1104 Northwest Hill Road	Pownal	VT	05261-9438
6-9-30	Northwest Hill Road	Deborah Nicholas	PO Box 178	Pownal	VT	05261-0178
F 24 12		147:11: Ct	Mason Hill Mgt c/o WM Strong 477			10000 (000
7-34-12	1000 Brookman Koad	William Strong	Madison Ave 8th Floor	New York	ΝY	10022-6803
7-44-1	57 Krum Road	Gregory Maret	57 Krum Road	Pownal	VT	05261-9467
7-9-31	1125 Northwest Hill Road	Louis Canto	1125 Northwest Hill Road	Pownal	VT	05261-9448
7-9-32	1151 Northwest Hill Road	Pamela Lyttle	1151 Northwest Hill Road	Pownal	VT	05261-9448
7-9-33	1149 Northwest Hill Road	Susan Burgess	1149 Northwest Hill Road	Pownal	VT	05261-9448
7-9-34	1331 Northwest Hill Road	Jamyn Burgess	1331 Northwest Hill Road	Pownal	VT	05261-9447
7-9-37	1374 Northwest Hill Road	Karin Lubeck	1374 Northwest Hill Road	Pownal	VT	05261-9439
7-9-38	1427 Northwest Hill Road	Ryan Bottesi	1427 Northwest Hill Road	Pownal	VT	05261-9446
7-9-39	1503 Northwest Hill Road	Deanna Peaslee	1503 Northwest Hill Road	Pownal	VT	05261-9445
7-9-40	24 Poor Mans Road	Shelley Porter	24 Poor Mans Road	Pownal	VT	05261-9473
7-9-42	625 Poor Mans Road	Howard Maturski	625 Poor Mans Road	Pownal	VT	05261-9472
7-9-42.1	Northwest Hill Road	Harry Beals, Jr.	105 Valley View Drive	Pownal	VT	05261-9463
7-9-45	1546 Northwest Hill Road	Wilfred Labonte	1546 Northwest Hill Road	Pownal	VT	05261-9441
7-9-46	1633 Northwest Hill Road	Timothy Sedlock	1633 Northwest Hill Road	Pownal	VT	05261-9444
7-9-47	1744 Northwest Hill Road	Rosamond Smithers	1744 Northwest Hill Road	Pownal	VT	05261-9442
7-US7-17	7275 US Route 7	Janet Tornabene	7275 Route 7	Pownal	VT	05261-9494
7-US7-18	21 Cash Place	Cherie Smith	21 Cash Place	Pownal	VT	05261-9214
7-US7-19	79 Cash Place	Russell Pembroke	PO Box 330	Pownal	VT	05261-0330
7-US7-21	Route 7	Progress Partners, Ltd.	158 Westmoreland Ave	White Plains	NY	10606
7-US7-21.1	Route 7	John & Heather Tietgens	473 Main Steet	Stamford	VT	05352
7-US7-21.2	Route 7	Town of Pownal	467 Center Street	Pownal	VT	05261
7-US7-22	Route 7	Stephen Hart	24 Walnut Steet	Williamstown	MA	01267-2266
7-US7-23	141 Purcell Road	Michelyne Pinard	141 Purcell Road	Pownal	VT	05261
7-US7-24	136 Purcell Road	Robert Sweet	136 Purcell Dugway	Pownal	VT	05261

Mailing List – Interested Parties 9/23/2010 Informational Hearing for Groundwater Withdrawal Permit					
Name		Email			
Joan Soucie	136 Green Mountain	Pownal	VT	05261	
Penelope Fehr	239 Skyboro Road	Pownal	VT	05261	pfehr@comcast.net
Jeanne Davis	173 Pratt Road	Pownal	VT	05261	
Eve Pearce	141 Carpenter Hill	Bennington	VT	05201	
Rep. Bill Botzow					botzow@sover.net
Keith Whitcomb, Jr. Reporter Bennington Banner	425 Main Street	Bennington	VT	05201	kwhitcomb@benni ngtonbanner.com

Notice of Application for Groundwater Withdrawal Permit (Act 199)

PLEASE TAKE NOTE that Beaver Wood Energy Pownal, LLC has applied for a permit application for a Groundwater Withdrawal Permit from the Vermont Agency of Natural Resources, in order to utilize an existing drilled well as a backup source of water for a proposed biomass energy plant at the former race track site in Pownal. The proposed withdrawal rate is estimated to be 72 gallons per minute on average, and 465 gpm on peak days.

The proposed withdrawal is located at the former Green Mountain Race Track on Lovett Cemetery Road in Pownal.

Full copies of the application may be reviewed at the Pownal Town Office and the Vermont Water Supply Division office in Waterbury. A public comment period is open for 30 days from the date of the application, ending on November 24, 2010. Comments shall be directed to the Water Supply Division at the address below.

<u>Contact information:</u> Dennis Nealon Vermont ANR, Water Supply Division 103 South Main Street Old Pantry Building Waterbury, VT 05671-0403

APPENDIX 2

VA ESC VA ESC	Alacadas Estas NIIPVEI O O O O O O O O O O O O O O O O O O O	
Bedrock Geology: Csc - St Catherine Formation. Slate and phyllite containing mine Ob - Bascom formation, and undifferentiated Luke Hill, Naylor and Hastings Creek Limestone. Interbedded dolomite, limeston and Hastings Creek Limestone. Interbedded dolomite, limeston calcareous sandstone, quartzite, and limestone breccia. Oh - Hortonville formation. Black, carbonaceous and pyrite slat locally sandy; brown weathered limy beds are common near bas	To Interbeds of quartzite. experies	POORMANS RD FOORMANS RD FOORMANS RD Sources: Bedrock Geology from Centennial Geologic Map of
Address Bedrock Geology: Cs: St Catherine Formation. State and phyllite containing mine Ob: Bascom formation, and undifferentiated Luke Hill, Naylor De Bascom formation. Black, carbonaceous and pyrite stat Icaluy sandy; brown weathered limy beds are common near bas	Printerbeds of quartzite. experimental experimental expe	POORMANS TO POORMANS TO Surces: Bedrock Geology from Centennial Geologic Map of termont (1961); Streams and Waterbodies from Vt. Hydrography
But we the comparison of the second secon	Proventiend of quartzite. e. commentations e.	POORMANS TO POORMANS TO POORMANS TO POORMANS TO Surces: Eedrock Geology from Centennial Geologic Map of termont (1961); Streams and Waterbodies from Vt. Hydrography dataset and VCGI (2008); Public Water Sources from VTANR
<complex-block></complex-block>	r interbeds of quartzite. edge, y or marble; e and phyllite, e. Beaver Wood Energy Pownal, LLC. Groundwater Withdrawal Evaluation	POORMANS TO POORMANS TO POORMANS TO POORMANS TO Surces: Bedrock Geology from Centennial Geologic Map of Kermont (1961); Streams and Waterbodies from Vt. Hydrography dataset and VCGI (2008); Public Water Sources from VTANR (2010); parcel boundaries obtained from Bennington County
Address of the second secon	VOLUTION IN THE OWNER IN THE	POORMANS TO POORMANS TO POORMA
Additional Recharge Area	VOLUTION INTERPORTED A CONTROL A CONTROL	POORMANS TO POORMANS TO POORMA
Here Public Water Source Estimated Additional Recharge Area Ob	Image: Control of the second secon	FOORMANS TO TO BE AND
Hereine Csc Public Water Source Dob	Image: Control of the second secon	FOORMANS TO TO BE AND
Herror Control Case Public Water Source Bedrock Geology: Characteria Characteria Characteria Case Estimated Area of Influence Case Estimated Additional Recharge Area Ob Streams (VHD) Oh Waterbody (VHD) Waterbody (VHD)	VOLUTION A MARKET AND AND A MARKET VOLUTION VICTORIAL A MARKET AND AND A MARKET A MARKET AND A MARKET AND A MARKET A MARKET AND A MARKET A MARKET AND A MARKET A MARKET AND A MARKET AND A MARKET A MARKET AND A MARKET AND A MARKET AND A MARKET A MARKET AND A MARKET A MARKET AND A	POOR 000 POOR 000 POOR 000 Strest: Extended to the second to
Edenote Geology: Sci Steams (VHD) Vaterbody (VHD) Waterbody (VHD) Vaterbody (VHD) Contour - 20 ft	VOLUTION INTERPORTED INTERO INTERPORTED	POORMANSTO POORMANSTO Structure Sources: Bedrock Geology from Centennial Geologic Map of Structure Structure Structure Structure Sources: Bedrock Geology from Centennial Geologic Map of Structure
Additional Recharge Area Ob Streams (VHD) Contour - 20 ft	VOLUTION VILLOUTI	POOR OD POOR
Additional Recharge Area Ob Streams (VHD) Contour - 20 ft Contour - 20 ft Contour - 100 ft	Image: Control of the second secon	POOR Dot
Image: Streams (VHD)	Image: control of the second secon	POORMANSE POORMANSE POORMANSE POORMANSE Surves: Eddrock Geology from Centennial Geologic Map of termont (1961); Streams and Waterbodies from Vt. Hydrography dataset and VCGI (2008); Public Water Sources from Vt. Hydrography (2009); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtained from Vtranse (2008); Source Site Planning Commission (2006); Roads obtai
Automatical and a strain of the strain of	Image: constraint of the second se	POOR MANS TO POOR MANS TO OUTON OF TO

•	n. L. CHAPTMAIN CO. OAKDALE, MASS. MAY 3 1 1962 6									
Name of I	Driller 1	in Al	mmin	Nan Nan	es of H	elpers	Free	1 Thin	Jay	ų
Job: Name	& Locatio	n Dei j	Matte	- Construction	Por	271	al 2	E R	da	Inack \
Date Start	ed 5-7	-62	Date F	inished 5-25-62	Dale	Stort	ed		Date F	finished
Hole No.	1 24	1" X 18	-" Su	avel Packed Will	Hole	No.				
Depth	Classification of		of		Depth		Classification of		of	
From To	Material			Feet of Screen Exposed.	From To		Material			Feet of Screen Exposed
0' 12'	top wit + Gravel		savel	15-0"			·			-
12' 30'	Hard Pan + Stone		trac	Size of Screen & Slot			[Size of Screen & Slot
30 41	Clay + Silt		lt	18" Saren	 					_
-HI HE	E Med Gurel		vel	Screen Left in					.' 	Screen Left in
48 57	Mul	<u>. Una</u>	vel	1						
- 57 64	mid	. <u>G</u>	avel_	Screen Puiled Out	 		 			Screen Pulled Out
64' 67	Shar	fo tigt	& Jucs				 			
· · · · · · · · · · · · · · · · · · ·										Pine Left in
	Jotal	dipt	to of	Pipe Leif in						
:	Hall	67-	0"	301-0 1V						Pipe Pulled Out
<u></u>				Pipe Pulled Out			·		<u>.</u>	
							} 			Bemarks
÷				fiemorits						
								··· · ····-		-
								·		
				ļ					······	<u> </u>
	<u> </u>	P1	ump Test o	n Hole No.	<u> </u>		Pump Test on Hole No.			
Date	Time	Dr. Down	G. P. M.	Static and Other Inlo.	Da	l u	Time	Dr. Down	G. P. M.	Static and Other Info.
				<u> </u>				 	1	ii
·										[*]
· · · · · · · · · · · · · · · · · · ·							·	<u>-</u>		
					- -			<u> </u>	<u>.</u>	
 					├	(
		 			 		·			
·									├──- 	
		<u>⊦-</u>	 		∦- 			·		
										
								<u>.</u>		

Monitoring Well Logs Pownal, Vermont: Beaver Wood						
	July 26, 27 2010					
	VHB PIONEER					
Monitoring Well ID	Sampled Interval Log					
MW-1	5.0 – 7.0': Dark brown, moist, fine to coarse gravel.					
	10.0 – 12.0': Brown, saturated, fine to coarse gravel, sand.					
	15.0 – 17.0': Brown, saturated, fine to coarse gravel, sand at 15.25'					
	Gray, saturated, very fine sand, trace silt at 15.25' to 15.7'. Light brown, saturated, very fine sand, trace silt at 15.7' to 16.4.					
	Well Construction Details:					
	• 2" PVC pipe					
	• <i>Stick down</i> = -0.45'					
	• Well Depth = 15.0'					
	 Filter sand = 4.0' – 15.0' 					
	• Bentonite seal = $3.0' - 4.0'$					
	 Natural backfill = surface - 3.0 					
	• Water level $(BTP) = 6.38$					
MVV-2	$5.0 - 7.0^{\circ}$: Light brown, some gray and orange, damp, fine to medium					
	10.0 12.0': Light brown, some gray, saturated fine to coarse gravel					
	trace sand, cobble					
	$15.0 - 17.0^{\circ}$ Light brown saturated fine to coarse gravel at 15' to 15.2'					
	Light brown, saturated, very fine sand, trace silt at 15.2' to16.5'. Light					
	brown, saturated, more silt, very fine sand at 16.5' 16.7'					
	Well Construction Details:					
	• 2" PVC pipe					
	• <i>Stick down</i> = -0.55'					
	• <i>Well Depth</i> = 15.0'					
	 Filter sand = 4.0' – 15.0' 					
	• Bentonite seal = $3.0' - 4.0'$					
	 Natural backfill = surface - 3.0' 					
	• Water level (BTP) = 7.7'					
MVV-3	$5.0 - 7.0^{\circ}$: Brown, damp, fine to medium sand, some gravel. Light					
	brown, damp, fine to medium sand at 5.2 to 6.25.					
	10.0 - 12.0 No recovery, well 15.0 - 17.0 Light brown, grove acturated all with trace years fine and					
	15.0 – 17.0. Light brown, gray, saturated, sint with trace very line sand.					
	• 2" PVC pipe					
	• Stick down = -0.50'					
	• Well depth = 15.0°					
	• Filter sand = $40^{\circ} - 150^{\circ}$					
	• Bentonite seal = $3.0' - 4.0'$					
	Monitoring Well Logs Pownal, Vermont: Beaver Wood Logged by OWM July 26, 27 2010					
-----------------------	--	--	--	--	--	--
Monitoring Well ID	Sampled Interval Log					
	 Natural backfill = surface - 3.0 					
N/\\\/_/	• Water level (BTP) = 8.9° 5.0 - 7.0 ^o : Grav with some grange, damp, fine to coarse gravel from 5.0 ^o					
10100-4	to 5.2'. Gray silt from 5.2' to 6.7'					
	10.0 – 12.0': No recovery, wet.					
	15.0 – 17.0': Light brown, very orange at 15.3, saturated, silt with some medium gravel at 15.0' to 15.1'					
	18.0' – 20.0':Gray at 18.0'-18.6', saturated, gray silt, some fine sand. Light brown at 18.6'-19.6' saturated, silt					
	Well Construction Details:					
	2" PVC pipe					
	• Stick down = -0.52°					
	• Well depth = 18.0° Filter appd = 7.0° 18.0°					
	• Filler Sand = $7.0 - 10.0$ • Bontonito soal = $6.0^{\circ} - 7.0^{\circ}$					
	 Demonite Sear = 0.0 -7.0 Natural backfill - surface - 6.0' 					
	• Water level (BTP) = 10.9°					
MW-5	5.0 - 7.0': Light brown with some orange, moist, fine to medium sand.					
	gravel at 5.0-5.2'					
	10.0 – 12.0': Brown with some orange, saturated, medium to coarse					
	gravel, trace sand, broken rock.					
	15.0' – 17.0': Brown and gray, saturated, some fine gravel, trace sand, silt at 15.0' – 15.6'. Gray, saturated, silt at 15.6' – 16.4'.					
	Well Construction Details:					
	• 2" PVC pipe					
	• <i>Stick down</i> = -0.25'					
	• Well depth = 15.0'					
	 Filter sand = 4.0 − 15.0' 					
	• Bentonite seal = $3.0 - 4.0$ '					
	 Natural backfill = surface - 3.0' 					
	• Water level (BTP) = 8.6'					
MW-6	5.0' - 7.0': Light brown, some orange, damp, fine sand throughout, some coarse gravel at $5.0' - 5.2'$.					
	10.0' – 12.0': Light brown, saturated. fine sand to coarse gravel. some					
	larger gravel. Fine sand from 10.0' – 10.2'.					
	15.0' – 17.0': Brown, saturated, fine to medium sand, medium to coarse					

	Monitoring Well Logs Pownal, Vermont: Beaver Wood Logged by OWM July 26, 27 2010 VHB PI NEER			
Monitoring Well ID	Aonitoring Sampled Interval Log			
	gravel. Fine to medium sand from 15.0' to 15.3'			
	Well Construction Details:			
	• 2" PVC pipe			
	• Stick down = -0.18'			
	• Well depth =15.0'			
	 Filter sand = 4.0' – 15.0' 			
	 Bentonite seal = 3.0' – 4.0' 			
	 Natural backfill = surface – 3.0' 			
	• Water level (BTP) = 9.28			

F:\57407.00 Beaver Wood Pownal\Data\UIC\Beaver Wood Pownal-MW Logs.doc

	<u> </u>		RO BO	4503 BORI	NG NUMBER:	MW-1 She	etol	1_
	PRECIME FO FRILLIANG & INVESTIGATION		BURLING1 05406~	TON, VT 1503 PRO	DJECT NAME: S/VHB B	EAVERWOOD		
$\overline{\mathbb{C}}$			T: 802-65	8-0820				
19			F: 802-86	0-1014 PROJEC	T LOCATION: POWNE	L, VERMONT		
				SOIL BORING	3 LOG			
BOR	ING LOCATION:		NORTHEAST COP	NER				
DAT	E AND TIME STAR	TED:	7/26/10 @ 0930			RIG HOURS METER STAR	Г: <u>775</u> 6	6.6
FOR	EMAN: CHRIS ALD	RICH	H & N STAFF	: CHRIS ALDRICH & JOH	N MCTERNAN			
DATI	E AND TIME COMP	LETED:	7/26/10 @ 1100			RIG HOURS METER END	D: 7758	3.1
				2 1/4 H S A	6 1/4 H S A	WASH/SPIN and DRIVE	AIR HAN	MER
SAM		<u>4 1/4 HOLLO</u> SPLI	T SPOON	DIRECT PUSH	CUTTINGS	BACKHOE	HAND A	UGER
5Am	SIZE: 24"	HAMM	ER: 140 LB.	FALL: 30"			CTDATA	1
NO	REC. (IN.)	DEPTH (FT.)	BLOWS		SAMPLE DESCRIP	TION	CHANGE	PID
1	12	5-7	15,19,15,15	SAND, GRAVEL.				
2	8	10-12	21,22,25,22	SATURATED SAND/GRA	VEL.			
	18	15-17	11.10.11.13	AS ABOVE, GRAY SILT.				
	10			SET 2" PVC WELL TO 15	S			
							-	
								.
							<u> </u>	
- 1								
								_
- -								···
_								
				WELL CONSTRUCTION	N DETAILS			
	PVC Screen:	2	n. diameter	Slot: 0.010	Sections: 10'	Set from:	15to	5
	PVC Riser:	<u>2</u> i	n. diameter		Sections: 4.5'	Set from:	to	-5
	Filter Sock: _		40 Å	haas 6	Cap	Suck up:	-0"	
	Sand Pack: _	<u>15</u> 4	to <u>4</u>	bags <u>0</u> bags 1/2	Piug	-		
	Grout seal:		to	bags	Gripper	-		
	Well Finish:	√	Flush	Guard	BTW	Native Backfill:	to _	

S:\VHB\Beaverwood\[Beaverwood Soil logs 7-26-10 Pownal.xis]MW-6

PECIAL TY FRILLIAG & DAVESTIGATION		P.O. BOX BURLING1 05406-4 T: 802-65 F: 802-86	4503 TON, VT 1503 8-0820 0-1014 SOIL	BORING PROJ PROJECT BORING	S NUMBER: ECT NAME: <u>S/VHB</u> LOCATION: <u>POWN</u> E L OG	MW-2 BEAVERWOOD EL, VERMONT	Sheet <u>1</u> of	f <u>1</u>		
BORI DATE FORE DATE	BORING LOCATION: DATE AND TIME STARTED: FOREMAN: CHRIS ALDRICH DATE AND TIME COMPLETED:		MIDDLE EAST SID 7/26/10 @ 1125 H & N STAFF 7/26/10 @ 1230	MIDDLE EAST SIDE 7/26/10 @ 1125 R H & N STAFF: CHRIS ALDRICH & JOHN MCTERNAN 7/26/10 @ 1230			RIG HOURS METER ST	RIG HOURS METER START: 7758.1 RIG HOURS METER END: 7759.4		
BORI SAMF	NG METHOD: PLING METHOD:	<u>4 1/4 HOLL(</u> SPLI HAMM	DW STEM AUGER	2 1/4 H S DIRECT PI FALL: 3	A USH 0"	6 1/4 H S A CUTTINGS	WASH/SPIN and DRIN BACKHOE	/E AIR HAN HAND A	UGER	
	5126, 24					SAMPLE DESCRI	PTION	STRATA	PID	
NO.	REC. (IN.)	DEPTH (F1.)	BLOWS			OAN LE DEOOR	non			
1	18	5-7	4,5,5,7	MOIST SAND/G	SRAVEL.			8' WATER		
2	5	10-12	3,9,17,15	SATURATED S	AND/GRAV	EL			ļ	
3	18	15-17	4,6,6,6	AS ABOVE, GR	AY BROWN	SILT @ 16+'.				
Ť				SET 2" PVC WI	ELL TO 15'.					
						. <u>. </u>				
		-		· · ·			· · · · · · · · · · · · · · · · · · ·			
				WELL CONST		DETAILS		tt		
	PVC Screen	2	in, diameter	Slot: (0.010	Sections: 10	Set f	rom: <u>15</u> to	5	
	PVC Riser:	2	in. diameter			Sections: 4.5	Set f	rom: <u>5</u> to _	-4	
	Filter Sock:						Stick	k up:4"		
	Sand Pack:	15	to4	bags	5	Сар	_			
	Bentonite Seal:	44	to <u>3</u>	bags	1/2	Plug <u>v</u>				
	Grout seal:		to	bags		Gripper <u>v</u>		3 10	0	
	Well Finish:		Flush	Guard		BIW		0		

S:IVHBIBeaverwood\[Beaverwood Soil logs 7-26-10 Pownal.xis]MW-6

	S PECIAL 7	TV-	P.O. BO	X 4503 BOR	ING NUMBER:	MW-3 She	et <u>1</u> 0	of <u>1</u>
			BURLING 05406-	TON, VT 4503 PR(DJECT NAME: <u>S/VHB</u>	BEAVERWOOD		
22		10022240000000	T: 802-66	8-0820				
· · · ·			F: 802-86	0-1014 PROJEC	T LOCATION: POWN	EL, VERMONT		
				SOIL BORING	g log			
BORI	NG LOCATION:		SOUTHEAST COR	RNER				
DATE	AND TIME STAR	TED:	7/26/10 @ 1245			RIG HOURS METER START	r: <u>775</u>	9.4
FORE	MAN: CHRIS ALI	DRICH	H & N STAFI	F: CHRIS ALDRICH & JOH	N MCTERNAN			
DATE	AND TIME COMP	PLETED:	7/26/10 @ 1400			RIG HOURS METER END): <u>776</u>	0.9
BORI	NG METHOD:	4 1/4 HOLLO	OW STEM AUGER	2 1/4 H S A	6 1/4 H S A	WASH/SPIN and DRIVE	AIR HAI	MMER
SAMP	LING METHOD:	SPL	IT SPOON	DIRECT PUSH	CUTTINGS	BACKHOE	HAND A	UGER
	SIZE: 24"	HAMM	ER: 140 LB.	FALL: 30"			OTDATA	1
NO.	REC. (IN.)	DEPTH (FT.)	BLOWS		SAMPLE DESCRI	PTION	CHANGE	PID
_1	15	5-7	12,12,13,25	MOSTLY BROWN SAND	SOME GRAVEL.			<u> </u>
2	0	10-12	7,11,2,4	NO RECOVERY, WET.				
3	14	15-17	2.2.9.7	BROWN, GRAY SILT,				
-								
				SET 2" PVC WELL TO 15	٠ <u>ــــــــــــــــــــــــــــــــــــ</u>			
					·····			
			,		· · · · · ·			
				WELL CONSTRUCTION	DETAILS			
	PVC Screen:	ir	n. diameter	Slot: 0.010	Sections: 10'	Set from: _	<u>15</u> to	5
	PVC Riser:	ir	n. diameter		Sections: 4.5	Set from:	<u> 5 </u> to	4
	Filter Sock:	15	to 4	hoer 5	Can	Stick up: _	-3"	
	Sand Pack: Bentonite Seal:	4	to 3	bags <u>5</u> bags 1/2	Cap Pluo √	-		
	Grout seal:	······	to	bags	Gripper V	-		l
	Well Finish:	F	lush G	Juard	BTW	Native Backfill:	<u> </u>	0

S:\VHB\Beaverwood\[Beaverwood Soil logs 7-26-10 Pownal.xis]MW-6

				4500			ANA/-4 5	sheet 1	of 1
	RILLING &		P.O. BOX	4503	BOKING NON				
			BURLINGT	ON, VÎ					
			05406-4	150,3	PROJECT	IAME: <u>SNHB BE</u>	EAVERWOOD		
33			T: 802-65	8-0820					
	a fa fa sta sta sta sta sta sta sta sta sta st		F: 802-860	0-1014 PR	OJECT LOCA	TION: POWNEL	, VERMONT		
				SOIL BO	RING LOG				
ļ			<u>, i</u>						
BORI	NG LOCATION:		NORTHWEST CO	RNER					
DATE	AND TIME START	TED:	7/27/10@0910				_ RIG HOURS METER ST	\RT:	7764
FORE	MAN: CHRIS ALD	RICH	H & N STAFF	: CHRIS ALDRICH &	JOHN MCTE	RNAN			
DATE		FTED:	7/27/10 @ 1040				RIG HOURS METER E	ND:7	765.6
DATE	AND TIME COM								
POPIN		4 1/4 HOLLO	OW STEM AUGER	2 1/4 H S A	(3 1/4 H S A	WASH/SPIN and DRIVE	<u>E AIR F</u>	IAMMER
SAMP	LING METHOD:	SPLI	T SPOON	DIRECT PUSH		CUTTINGS	BACKHOE	HAND) AUGER
07	SIZE: 24"	HAMM	ER: 140 LB.	FALL: 30"					
			DLOINE		SAL	APLE DESCRIPT	NON	CHANC	E PID
NO.	REC. (IN.)	DEPIH(FL)	BLOWS		0/				
1	19	5-7	3,2,3,6	2" GRAVEL @ 5', T	HEN VERY FI	NE SAND/GRAY	SIL1.		
2	0	10-12	2,1,2,3				······		
3	14	15-17	1,2,1,2	SATURATED VERY	/ FINE SAND/	GRAY SILT, GR	AVEL @ 14'.		
4	20	18-20	2,2,4,3	AS ABOVE.					
				SET 2" PVC WELL	TO 18'				
					10.00.				
			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		-
		· · · · · · · · · · · · · · · · · ·			<u></u>	<u> </u>			
									-
				· · · · · · · · · · · · · · · · · · ·	<u></u>				
_ [
					<u> </u>				
									_
_ -					<u> </u>				
			·						
I	ł	1		WELL CONSTRU	CTION DETA	ILS			
						10	Cat fe	om; 18	to 8
	PVC Screen: _	2	in. diameter	Slot:0.01	U Sect	ions: 10'	Set fr	om: 8 '	to 0.3
	PVC Riser:	2	in. diameter		Sect	10110, <u>(,1</u>	Stick	up:	3"
	Filter Sock: _	18	to 7	baas 6		Cap_			
	Sano Pack: _	7	to 6	bags 1/2	 !	 Plug√	-		
	Grout seal:	· · · · · · · · · · · · · · · · · · ·	to	bags	Gri	pper√	_		
	Well Finish:	V	Flush	Guard	£	3TW	Native Backfill:	6	io

S:WHB\Beaverwood\[Beaverwood Soil logs 7-26-10 Pownal.xls]MW-6

1	S PECIAL 1	TY	P.O. BO	X 4503 BOI	RING NUMBER:	<u>MW-5</u> She	eet10	of <u>1</u>
	RULLARD &		65406- 7: 802-66 5: 802-86	4503 PF 88-0820 0-1014 PROJE	ROJECT NAME: <u>S/VHB</u> CT LOCATION: POWN	BEAVERWOOD EL, VERMONT		
				SOIL BORIN	G LOG			
BOR								
DATE	F AND TIME STAR		7/27/10 @ 0745		····· · · · · · · · · · · · · · · · ·	RIG HOURS METER STAR	T· 772	67
FOR	EMAN: CHRIS ALI	DRICH	H & N STAFI		IN MCTERNAN			
DATE		LETED:	7/27/10 @ 0900)· 77	64
27.172								
BORI	NG METHOD:	<u>4 1/4 HOLLO</u>	OW STEM AUGER	2 1/4 H S A	6 1/4 H S A	WASH/SPIN and DRIVE	AIR HAI	MMER
SAMF	LING METHOD:	<u>SPL</u>	T SPOON	DIRECT PUSH	CUTTINGS	BACKHOE	HAND AUGER	
	SIZE: 24"	HAMM	ER: 140 LB.	FALL: 30"			STRATA	
<u>NO.</u>	REC. (IN.)	DEPTH (FT.)	BLOWS		SAMPLE DESCRI	PTION	CHANGE	PID
1	18	5-7	6,7,7,23	MOIST BROWN SAND,	GRAVEL ON TOP.			
2	10	10-12	10,15,10,18	SATURATED SAND/GR	AVEL WITH SOME LAR	GE STONES.	l	
3	17	15-17	4,7,7,20	BROWN SAND TO 15 1	2' THEN GRAY SILT (A	LL SATURATED).		
							ļ	
-+				SET 2" PVC WELL TO 1	5'.			-
_+								
-+								
				<u></u>				
_								
1								
_		•						
				WELL CONSTRUCTION	DETAILS			
	DVO C	I		WELL CONSTRUCTION	I DETAILS			
	PVC Screen:	2 in 2 in	n. diameter	WELL CONSTRUCTION	Sections: 10'	Set from:	<u>15</u> to	5
	PVC Screen: PVC Riser: Filter Sock:	<u>2</u> in 2 in	ı. diameter ı. diameter	WELL CONSTRUCTION	I DETAILS Sections: <u>10'</u> Sections: <u>4.5'</u>	Set from: Set from: Stick up:	to 5 to	5 0.3
	PVC Screen: PVC Riser: Filter Sock: Sand Pack:	2in in 15in	a. diameter b. diameter to <u>4</u>	WELL CONSTRUCTION Slot: 0.010 bags 5	I DETAILS Sections: 10' Sections: 4.5' Cap	Set from: Set from: Stick up:	15 to 5 to -3"	5 0.3
	PVC Screen: PVC Riser: Filter Sock: Sand Pack: Bentonite Seal:	2 in 2 in 15 4	to <u>4</u>	WELL CONSTRUCTION Slot: 0.010 bags 5 bags 1/2	I DETAILS Sections: 10' Sections: 4.5' Cap Plug	Set from: Set from: Stick up:	<u>15</u> to <u>5</u> to -3"	5 0.3

S:\VH8\Beaverwood\[Beaverwood Soil logs 7-26-10 Pownat.xls]MW-6

	Special TV RILLING & INVESTIGATION		P.O. BO)	(4503 BO	RING NUMBER:	MW-6 She	eto	>f <u>1</u>
			BURLING1 05406-4	FON, VT 1603 PI	ROJECT NAME: <u>S/VHB</u>	BEAVERWOOD		
			T: 802-65	8-0820				
			F: 802-86	0-1014 PROJE	CT LOCATION: POWN	IEL, VERMONT		
				SOIL BORIN	IG LOG			
BOR	ING LOCATION:		SOUTHWEST CO	RNER				
DAT	E AND TIME STAR	TED:	7/26/10 @ 1415			RIG HOURS METER STAR	T: <u>77(</u>	61
FOR	EMAN: CHRIS ALE	RICH	H & N STAFF	CHRIS ALDRICH & JO	HN MCTERNAN			
			7/26/10 @ 1530			RIG HOURS METER EN	D: 776	2.4
	E AND TIME COM		1120110 (8 1000					
BOB		4 1/4 HOLLO	W STEM AUGER	2 1/4 H S A	6 1/4 H S A	WASH/SPIN and DRIVE	AIR HAI	MMER
SAM	PLING METHOD:	SPLI	T SPOON	DIRECT PUSH	CUTTINGS	BACKHOE	HAND A	UGER
	SIZE: 24"	HAMM	ER: 140 LB.	FALL: 30"				-T
NO.	REC. (IN.)	DEPTH (FT.)	BLOWS		SAMPLE DESCR	IPTION	STRATA CHANGE	PID
1	20	5-7	3,3,6,9	MOIST SILTY SAND, B	ROWN/GRAY.			<u> </u>
2	6	10-12	10,6,2,5	SAND/GRAVEL, SOME	LARGE STONES.	······································		
3	12	15-17	4,5,5,5	AS ABOVE.				<u> </u>
					· · · · · · · · · · · · · · · · · · ·			_
				SET 2" PVC WELL TO	15'.	······································		ļ
-								
\neg								
						10 		
						· · · · · · · · · · · · · · · · · · ·		
\rightarrow				· · · · · · · · · · · · · · · · · · ·	<u> </u>		+	
\neg								
							1	
							1	
<u>_</u>							<u>}</u>	
							<u>I</u>	
			n diamatar	Slot: 0.010	Sections: 10'	Set from:	15 to	5
	PVC Riser	i	n. diameter	0.00	Sections: 4.5'	Set from:	to	0.3
	Filter Sock:	'			· · · · · ·	Stick up:	-3"]
	Sand Pack:	15	to4	bags 5	Cap			
	Bentonite Seal:	4	to <u>3</u>	bags <u>1/2</u>	Plug 🧹			
	Grout seal:		to	bags	Gripper <u>v</u>		3 10	0
	Well Finish: _	<u></u> I	Flush	Guard	RIM		<u> </u>	<u> </u>

S:\VHB\Beaverwood\[Beaverwood Soil logs 7-26-10 Pownal.xls]MW-6

-	WELL: LOCATION: DRILLER: HYDROGEOLOGIST	TPW-1, Former location of UST #3B 2,000 gallon gasoline (LUST) Green Mountain Race Track, Pownal, VT East of garage. T.L. Boise Excavating, Inc. William Norland, Lincoln Applied Geology, Inc.	
<u> </u>	DATE:	November 11, 1993	
	Soils Description:	(BG = <u>B</u> ackground [0.2], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u>	er <u>M</u> illion)
_	Depth	Description	<u>PID (ppm)</u>
	0 - 1'	Brown, dry, topsoil	BG
	1 - 2.5'	Tan brown, dry, medium to coarse sand; some gravel	10 - 20
	2.5 - 4'	Grey, dry, <u>sitt & fine sand; little clay,</u> gasoline odor	10 - 22
_	4 - 5.5'	Tan brown, dry, medium to coarse sand; some fine sand	10 - 22
	5.5 - 14.8'	Brown and grey, dry to wet, <u>boulders & cobbles & gravel;</u> some fine to coarse sand	3 - 8 (6') 10 - 18 (8') 240 (11') 50 - 60 (12.5')
		Ground water encountered at 12.5 feet Base of LUST at 8' depth	
	Well Construction:		
-	Bottom of Boring: Bottom of Well: Well Screen: Solid Riser:	14.8' 14.8' (3.3') 11.5 to 14.8'; 2" PVC hand slotted, Sch 40 (11.5') 0 to 11.5'; 2" PVC, Sch 40	

Sand Pack:

Backfill:

Well Box:

Bentonite Seal:

None None

None

(14.8') backfilled with excavated soils

	WELL: Location: Driller: Hydrogeologis ⁻	MW-1, Upgradient well near corner of track kitchen bldg. Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. T: William Norland, Lincoln Applied Geology, Inc.	
	DATE:	March 28, 1994	
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> e	r <u>M</u> illion)
	<u>Depth</u>	Description	PID (ppm)
	0 - 0.25'	Asphalt pavement 3"	
	0.25' - 2'	Dry to moist, tan, fine to medium şand, some gravel.	BG
	2' - 4'	8" moist, tan, <u>fine to medium sand;</u> little gravel; 4" moist, tan <u>silt;</u> some very fine sand; fine sand	BG
_	4' - 6'	12" moist, tan, <u>silt</u> and fine sand; little very fine sand; rust staining minor 2" moist, tan brown, <u>silt</u> and fine sand; little fine to medium gravel	BG
	ઈ ' - 8'	Dry, tan and buff, <u>fine gravel;</u> some fine to coarse sand; trace medium to coarse gravel. Very hard and 'boney'.	BG
	8' - 9.5'	Dry, tan and brown, <u>fine to medium gravel;</u> some fine to coarse sand; trace coarse gravel. Coarse gravels.	BG
	9.5' - 11.5'	Dry to moist, tan, fine to medium gravel; some fine to coarse sand; trace coarse gravel.	BG
_	11.5' - 13.5'	Wet, brown, <u>fine to medium sand;</u> some fine to medium gravel; trace coarse sand. Not much recovery - in water, saturated @ 11.4' (inside augers)	BG
	13.5' - 15.5'	Wet, brownish grey, <u>medium to coarse sand;</u> some fine to medium gravel; little fine sand. No odors.	BG
_	15.5' - 17.5'	Wet, brownish grey, <u>medium to coarse sand;</u> some fine to medium gravel; little fine sand.	BG
	17.5' - 19.5'	3" wet, brownish grey, <u>medium to coarse sand;</u> little fine sand; trace fine gravel. 9" wet, brown, <u>fine sand;</u> little silt; trace medium sand.	BG
	19.5' - 21.5'	Wet, brown, fine to medium sand; some silt; trace coarse sand, fine gravel.	BG
_	21.5' - 23.5'	Wet, brown, fine to medium sand; some silt; trace coarse sand, fine gravel	BG
	23.5' - 25.5'	Wet, brown, fine to medium sand; some coarse sand, little silt.	BG

Well Contruction:

25.5' Bottom of Boring: 25.5' Bottom of Well: (20') 5.5' - 25.5' - 2" PVC, sch 40, 0.020" slot Well Screen: Solid Riser: (5') 0.5' - 5.5' - 2" PVC, Sch 40 (21.5') 4' - 25.5' - #1 sand Sand Pack: Bentonite Seal: (2') 2' - 4', holeplug and enviroplug Backfill: (1.5') 0.5' - 2' Well Box: Flush with grade

Lincoln Applied Geology, Inc., RD#1 Box 710, Bristol, Vermont 05443

_`	. <u></u>	WELL LOG	
	WELL:	MW-2, between LUST source area and GMRT pumping well (house) - ed kennels	ige (comer) of dog
—	LOCATION:	Green Mountain Race Track, Pownal, VT	
	DRILLER:	Tri-State Drilling and Boring, Inc.	
	HYDROGEOLOGIS	F: William Norland, Lincoln Applied Geology, Inc.	
	DATE:	March 28, 1994	
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>Lamp</u> [>500], ppm = <u>P</u> arts <u>P</u> e	r <u>M</u> illion)
	Depth	Description	<u>PID (ppm)</u>
	0 - 0.25'	Asphalt pavement.	
	0.25' - 0.5	Gravel/Sand subbase (fill)	
	0.5' - 4'	Moist, brown, fine to very fine sand and silt; trace fine gravel.	BG
	4' - 6'	12" moist, brown to dark brown, <u>very fine sand and silt;</u> trace fine gravel 6" moist, tan, <u>very fine sand and silt;</u> trace roots	BG
_	9' - 11'	 2" moist, brown, <u>very fine sand and silt;</u> little fine sand and fine gravel. 4" moist to dry, brown, <u>medium to coarse sand</u>; some fine to medium gravel; little fine sand 	BG
~	14' - 15.5'	Wet, brown, <u>fine to medium gravel</u> ; some medium to coarse sand; trace coarse gravel. Water approx. 12' inside augers.	BG
—	19' - 21'	Wet, brown, medium to coarse sand; little fine to medium gravel, fine sand. 3' of sands into augers, heaving.	BG
		Overdrill to 28' depth, install well.	
—			

Well Contruction:

.

—	Bottom of Boring:	28'
	Bottom of Well:	25.5'
	Well Screen:	(20') 5.5' - 25.5' - 2" PVC, sch 40, 0.020" slot.
	Solid Riser:	(5') 0.5' - 5.5' - 2" PVC, Sch 40
_	Sand Pack:	(24') 4' - 28'
	Bentonite Seal:	(2') 2' - 4'
	Backfill:	(1.5') 0.5' - 2'
~	Well Box:	Cemented flush with grade.

_	WELL: LOCATION: DRILLER: HYDROGEOLOGIST DATE:	MW-3 Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. William Norland, Lincoln Applied Geology, Inc. March 29, 1994	
~	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> e	er <u>M</u> illion)
	Depth	Description	PID (ppm)
_	0 - 0.25'	Asphalt pavement	
	0.25' - 1.25'	Sand and gravel fill	BG
	2' - 4'	3" moist, brown, <u>medium to coarse sand and fine to medium gravel</u> 11" moist, dark brown, <u>fine to very fine sand;</u> some silt; trace roots 6" moist, tan, <u>fine to very fine sand;</u> some silt	BG
_	4' - 6'	Moist, brown and tan, <u>silt and very fine sand;</u> little fine sand 1" layer of fine sand; some very fine sand @ 8' depth; darker brown color	BG
	6' - 8'	6" moist, brown, <u>silt and very fine sand;</u> little fine sand. 3" <u>medium to coarse sand;</u> some fine to medium gravel; little fine sand.	BG
	8' - 10'	Moist, brown to olive, fine to coarse gravel; some coarse sand; little to trace medium sand	BG
-	10' - 12'	Wet - in water, brown, medium to coarse gravel; some coarse sand; little fine to medium sand. 'Boney' drilling.	BG
_	12' - 14'	6" wet, brown, <u>medium to coarse gravel;</u> some medium to coarse sand; little fine sand. 4" wet, tan upper, grey lower, <u>silty clay;</u> little fine gravel 1" <u>fine to very fine sand;</u> little silt.	BG
-	14' - 16'	Wet, brown, fine to medium sand; little silt; trace coarse sand. At 15" depth approx 1" thick tan, silty clay layer.	BG
	16' - 18'	Wet, brown, fine to medium sand; some coarse sand; little silt	BG
	18' - 20'	15" wet, brown, <u>fine to medium sand;</u> some coarse sand; little silt 9" wet, brown, <u>very fine sand and silt;</u> some fine sand.	BG
	20' - 20.5'	Wet, brown, very fine sand and silt; little fine sand. Auger to 28', heaving sands.	BG
_	24' - 26'	Heaving sands of fine to medium sand; silt.	

Well Contruction:

- Botto Botto Well Solid	om of Boring: om of Well: Screen: I Riser: I Pack:	28' 25.5' (20') 5.5' - 25.5', 2" PVC, sch 40, 0.020" slot (5') 0.5' - 5.5', 2" PVC, Sch 40 (26') 2' - 28'
Bent Back	onite Seal: (fill: Box:	(1') 1' - 2' (0.5') 0.5' - 1' Cemented flush with grade

_	Well: Location: Driller: Hydrogeologist Date:	 MW-4, West of LUSTs beside GMRT roadway. Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. William Norland, Lincoln Applied Geology, Inc. March 29, 1994 	
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> er	<u>M</u> illion)
_	<u>Depth</u>	Description	PID (ppm)
	0 - 0.25'	Asphalt pavement	
	0.25' - 1.25'	Sand and gravel	BG
_	4' - 6'	3" moist, brown, <u>very fine sand and silt</u> 2" moist, tan, <u>fine to medium sand;</u> little coarse sand 7" moist, tan, <u>very fine sand and silt</u> 4" moist, tan, <u>fine to medium sand;</u> trace coarse sand At 6' depth - gravel and cobbles - very difficult drilling	BG
	9' - 9.5'	No recovery - on boulder or cobble Drill to approx 10' - refusal on boulder. Remove augers, backup rig approx 6- 7'. Drill to 5.5' depth - hit gravel and cobbles to 13'	
	14' - 16'	Wet, brown, fine to medium sand; some silt	BG
		Heaving sands into augers, drill to 28' and install well.	

Well Contruction:

_	Bottom of Boring:	28'
	Bottom of Well:	24.5'
	Well Screen:	(20') 4.5' - 24.5', 2" PVC, sch 40, 0.020" slot
	Solid Riser:	(4') 0.5' - 4.5', 2" PVC, Sch 40
	Sand Pack:	(24.5') 3.5' - 28'
	Bentonite Seal:	(2') 1.5' - 3.5'
	Backfill:	(1') 0.5' - 1.5'
-	Well Box:	Cemented flush with grade

_	WELL: LOCATION: DRILLER: HYDROGEOLOGIS [*] DATE:	MW-5, At W. end of former 20K gal UST Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. I: William Norland and Rick Vandenberg, Lincoln Applied Geology, Inc. March 29 and 30, 1994	
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> e	r <u>M</u> illion)
_	Depth	Description	<u>PID (ppm)</u>
	0	Unpaved grass area	
-	2' - 4'	10" moist, tan, <u>very fine sand and silt;</u> little fine sand; trace fine gravel 12" moist, grey, <u>silt and very fine sand;</u> little fine sand	BG
	4' - 6'	Moist, grey, silt and very fine sand; trace fine sand (organics)	BG
-	6' - 8'	19" Moist, grey, <u>silt and very fine sand;</u> little to trace fine sand; trace roots Bottom 2" is coarser; more fine sand and medium sand (organics odor)	BG
-	8' - 10'	3" wet, grey to olive green, <u>silt and fine sand;</u> trace roots; clay 3" wet <u>fine to coarse gravel;</u> some silt; fine sand; trace medium to coarse sand	BG
-	10' - 12'	Wet, grey to olive green, <u>fine to coarse gravel;</u> some silt; fine sand; little medium to coarse sand	BG
	12' - 14'	Grey silt and medium to coarse sand; some coarse gravel, very fine sand	BG
	14' - 16'	<u>Medium to fine sand;</u> grey; some silt; trace coarse gravel, coarse sand. Very well sorted	BG
	16' - 18'	Top 6" <u>fine to very fine sand,</u> grey; some silt , fine to medium gravel; bottom 9" <u>silty fine sand;</u> olive	BG
-	18' - 20'	Silty clay with trace of very fine sand, olive	BG
	20' - 22'	Silty clay with alternating bands of fine sand, tan	BG
	22' - 24'	Silty clay with alternating bands of fine sand, tan	BG
	24' - 26'	Silty clay with alternating bands of tan sand; fine to medium; grey also	BG

.

_

Well Contruction:

	Bottom of Boring:	26'
	Bottom of Well:	25'
_	Well Screen:	(20') 5' - 25', 2" PVC, sch 40, 0.020" slot
	Solid Riser:	(8') +3' - 5', 2" PVC, Sch 40.
	Sand Pack:	(21') 4' - 25'
	Bentonite Seal:	(2') 2' - 4'
┷.	Backfill:	(1.5') 0.5' - 2'
	Well Box:	Stick up well guard
	,	

	WELL: LOCATION: DRILLER: HYDROGEOLOGIS ⁻ DATE:	MW-6 Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. T: Rick Vandenberg, Lincoln Applied Geology, Inc. March 30, 1994	
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> er	r <u>M</u> illion)
	Depth	Description	PID (ppm)
-	0 - 4'	Tan to light brown; fine to very coarse sand, some fine to coarse gravel; trace cobble, silt.	BG
_	4' - 6'	Light brown; fine to very coarse sand; some fine to coarse gravel; trace silt.	BG
	8' - 10'	Light brown; <u>fine to very coarse sand;</u> some fine to medium gravel; some cobble; some silt.	BG
_	14' - 16'	Light brown; sand, <u>coarse to very coarse</u> , some fine to medium sand; some gravel fine to medium; trace cobble	BG
<u> </u>	16' - 18'	Grey; silty clay; some interbeds of tan fine sand.	BG

.

ļ

-	Bottom of Boring:	28'
	Bottom of Well:	25'
	Well Screen:	(20') 5' - 25', 2" PVC, sch 40, 0.020" slot
_	Solid Riser:	(8') +3' - 5', 2" PVC, Sch 40.
	Sand Pack:	(21') 4' - 25'
	Bentonite Seal:	(2') 2' - 4'
	Backfill:	(1.5') 0.5' - 2'
-	Well Box:	Stick up well guard

22

Lincoln Applied Geology, Inc., RD#1 Box 710, Bristol, Vermont 05443

Beaver Wood Energy, LLC. - Pownal, VT

Groundwater Withdrawal Evaluation

Groundwater Elevation Data

Well ID	Total Depth (feet BTC)	Ground Surface Elevation (feet)	Stickup (Feet)	Top-of-Casing Elevation (feet)	Measurement	8/3/2010
					Water Level (Ft BTC)	6.63
MW-1	14.55	542.04	-0.45	541.59	Water Level (Ft Below Grade)	7.08
					Water Elevation (ft)	534.96
					Water Level (Ft BTC)	7.92
MW-2	14.5	543.01	-0.55	542.46	Water Level (Ft Below Grade)	8.47
					Water Elevation (ft)	534.54
					Water Level (Ft BTC)	9.17
MW-3	14.5	542.48	-0.50	541.98	Water Level (Ft Below Grade)	8/3/2010 6.63 7.08 534.96 7.92 8.47 534.54 9.17 9.67 532.81 11.22 11.74 529.10 8.97 9.22 532.09 9.63 9.81 531.43 12.64 528.31
					Water Elevation (ft)	532.81
					Water Level (Ft BTC)	11.22
MW-4	17.5	540.84	-0.52	540.32	Water Level (Ft Below Grade)	11.74
					Water Elevation (ft)	529.10
					Water Level (Ft BTC)	8.97
MW-5	14.8	541.31	-0.25	541.06	Water Level (Ft Below Grade)	9.22
I'					Water Elevation (ft)	532.09
					Water Level (Ft BTC)	9.63
MW-6	14.8	541.24	-0.18	541.06	Water Level (Ft Below Grade)	9.81
					Water Elevation (ft)	531.43
Hoosic					Water Level (Ft Below RP)	12.64
River				540.95	Water Level (Ft Below Grade)	
TRIVE!					Water Elevation (ft)	528.31

Well elevations from survey by Bruno Associates of Woodstock, VT

River Water Level on 8/2/2010 = 528.31'

Beaver Wood Energy Pownal LLC.

Groundwater Flow Calculations Unconfined Water Table

VHB 10/8/2010

1) Determine Groundwater Flow Rate in Unconfined Water Table (Sand and Gravel)

n (Porosity) = 0.39 (for Coarse Sand, see following page) K (Permeability) = 18.2 ft/day (from onsite testing) i (gradient) = 2.50% measured from groundwater contour map

$$V = \frac{(K)(i)}{n}$$

V (flow velocity) = 1.2 ft/day D (Distance to River) = 400 feet along groundwater flowpath T (Travel time to River) = 343 days

2) Determine Travel Time for Groundwater from Water Table to Reach the Bedrock Aquifer

$$V = \frac{(K)(i)}{n}$$

where:

V = groundwater velocity (ft/day, vertical infiltration)

K = hydraulic conductivity = 0.00066 ft/day for clay (textbook value, see 2nd following page)

i = hydraulic gradient = 100% for downward vertical flow

n = porosity = 42% (typical porosity for clay - see next page)

 $V = \frac{0.0007 \text{ ft/day } x \quad 100\%}{0.42} = 1.57\text{E-03 ft/day}$

Tot = (D) / (V)

where:

Tot = time of travel (days)D = Distance =40V = velocity =1.57E-03feet per day, from aboveTot =2.55E+04 daysor70 years

Conclusion: It takes well over 2 years for groundwater to recharge the bedrock aquifer due to the thick layer of clay over the bedrock. Therefore there is no two-year travel zone for the bedrock aquifer.

Ime-grained 33 predominantly sand 31 Ime-grained 33 Tuff 41 Sandstone, 37 Basalt 17 Imestone 30 Gabbro, weathered 43 Dolomite 26 Granite, weathered 45 These values are for repacked samples; all others are undisturbed.	For uncarrine Gravel, coarse 28 ^a Loess For uncarrine Gravel, medium 32 ^a Peat Urate teste Sand, coarse 39 Silustone 33 Sand, medium 39 Claystone 43 Silt 46 Till, Silt 46 Till, predominantly silt 34 Underlying Clay 50 Claystone 43 Silt 46 Till, Sandstone, 33 Tuff 50 Clay 33 Tuff 40 Till, 34 Tuff 50 Clay 31 Tuff 50 Clay 50 Clay 50 Clay 50 Claystone 50 Claystone 50 Clay 50 Clay 51 Claystone 51 Clay	Porosity, Porosity, Porosity, Porosity, Material Percent Material Percent	TABLE 2.1 Representative Values of Porosity (after Morris and Johnson ³⁵)	The distribution of particles is characterized by the uniformity coefficient U_c as $T_{12} = \frac{1}{2}$. The percentage finer scale on the ordinate shows the percentage of material smaller than that of a given size particle on a dry-weight basis. The effective particle on a dry-weight basis. The distribution of particles is the 10 percent finer than value (d_{10}) . The distribution of particles is characterized by the uniformity coefficient U_c as $T_1 = \frac{1}{2}$, $T_1 = \frac{1}{2}$, $T_2 = \frac{1}{2}$, $T_2 = \frac{1}{2}$, $T_3 = \frac{1}{2}$, $T_4 = \frac{1}{2}$, $T_6 = \frac{1}{2}$	Soil Classification. Unconsolidated geologic materials are nor- mally classified according to their size and distribution. A com- monly employed system based on particle, or grain, size is listed in Table 2.2. Evaluation of the distribution of sizes is accomplished by mechanical analysis. This involves sieving particles coarser than 0.05 mm and measuring rates of settlement for smaller particles in suspension. Results are plotted on a particle-size distribution graph such as that shown in Fig. 2.3. The percentage finer scale on the ordinate shows the percentage of material smaller than that of	where α_z is the porosity at depth z , α_o is the porosity at the surface, α is a constant, and e is the base of Naperian logarithms.	rials are listed in Table 2.1. It should be recognized that porosities for a particular soil or rock can vary considerably from these values. In sedimentary rocks subject to compaction, measurements show that porosity decreases with depth of burial. ²⁶ Thus, a typical rela- tion has the form $\alpha_{z} = \alpha_{z} e^{-\alpha z}$ [2.4]	28 GROUNDWATER HYDROLOGY	trences the trend of the trend	CROUNDWA CROUNDWA CROUNDWA and to compact that any considerably from to compaction, measure epth of burial. ²⁶ Thus, a $= \alpha_o e^{-\alpha z}$ Thus, a $= \alpha_o e^{-\alpha z}$ $= \alpha_o e^{-\alpha z}$ th z, α_o is the porosity a ase of Naperial logarith assolidated geologic mate their size and distribut distribution of sizes is a nvolves sieving particlesize is 2.3. The percentage nvolves sieving particlesize $\alpha_{eo} f a the porosity a nvolves sieving particlesize \alpha_{eo} f a the porosity and logen \alpha_{eo} f a the porosity and logen \alpha_{eo} f a the porosity and logen \alpha_{eo} f a the logen\alpha_{eo} f a the logen \alpha_{eo} f a the l$	Table 2.1. It show Table 2.1. It show rocks subject creases with d m α_{z} shows subject creases with the base of particles is U_c U_c U_c Q_c	28 rials are listed in a particular soil In sedimentar, that porosity devision has the forr that porosity devision has the porosity devision where α_z is the r soil Classified monly employed monly employed in Table 2.2. Eval by mechanical a 0.05 mm and m in suspension. I graph such as the the ordinate sho a given size part The effective J the ordinate sho a given size part The effective J the ordinate sho a given size part The effective J ficient U _c as ficient U _c as sind, fine Sand, coarse Sand, fine Sand, coarse fine-grained Limestone Dolomite Dune sand	For uncontinue Underbying Class
---	---	---	---	---	--	---	--	--------------------------	---	--	---	--	------------------------------------

.

GROUNDWATER MOVEMENT

Material	Hydraulic Conductivity, m/day	Type of Measurement ^a
Gravel, coarse	150	R
Gravel, medium	270	R
Gravel, fine	450	R
Sand, coarse	45	R
Sand, medium	12	, R
Sand, fine	2.5	R
Silt	0.08	/ H
Clay	0.0002 X 3.3 F	4/m = H 0.00066 + 1
Sandstone, fine-grained	0.2	V
Sandstone, medium-grained	3.1	v
Limestone	0.94	v
Dolomite	0.001	v
Dune sand	20	v
Loess	0.08	V
Peat	5.7	V
Schist	0.2	v
Slate	0.00008	v
Fill, predominantly sand	0.49	R
Fill, predominantly gravel	30	R [.]
Fuff	0.2	v
Basalt	0.01	V
Gabbro, weathered	0.2	V
Granite, weathered	1.4	· V

^aH is horizontal hydraulic conductivity, R is a repacked sample, and V is vertical hydraulic conductivity.

mental work. Most permeability formulas have the general form

 $k = cd^2 \tag{3.15}$

where *c* is a dimensionless coefficient, or

$$k = f_s f_a d^2 \tag{3.16}$$

where f_s is a grain (or pore) shape factor, f_{α} is a porosity factor, and d is characteristic grain diameter.^{17,37,43} Few formulas give reliable estimates of results because of the difficulty of including all possible variables in porous media. For an ideal medium, such as an assemblage of spheres of uniform diameter, hydraulic conductivity can be accurately evaluated from known porosity and packing conditions.

Because of the problems inherent in formulas, other techniques for determining hydraulic conductivity are preferable.

_	dec	: home dec calenda	ar contact	dec topic	c index	sitemap	search
Water Su	ipply D	Division					VT DEC
wsd home	regulations	permits	grants/loans	publicati	ions	calendar	contacts
	8						
						de	<u>ec home</u> > wsd home
Critical Infractrue	turo	Well Deta	ails				
Protection Inform	ation	Data Completed	11/01/10	06		0	uicklinks
Permit, Certificati	on &	Date Completed	12/20/10	90 06		» Listo	of Vermont
& Information	on Forms	Date Received	12/30/19 11 Rona		Dube &	Licen	sed Well Drillers
Water System Ca	pacity	Driller	Son Arte	sian Wells		» Well	Driller Licensing
Well Driller & Wel	WSRF	Well Report Number	5243			» Well	Driller License
Location Program	1	Tag	81-002			forms	
Source Water Pro	otection		SCREEN	DETAIL: 62	.5 ' -		
Water System Op	erators	Comments	65.5' .05 NEAT CI	0 65.5 - 68.8 EMENT BENT	.030. TONITE	» <u>Curre</u>	ent Nationwide
Drinking Water Q	uality	T	WAS US	ED TO SEAL	CASING.	Threa	at Level: Yellow
The TNC Handbo	ok	Iown Man Call	Pownal				
Rules and Regula	itions	Map Cell	1983				
Staff Directory		F011 Addross					
News		SubDivision					
Other Links of Int	orost	Lot Number					
Agency of Natura	l	Owners First Name					
Resources GIS In	ternet	Owners Last Name	POWNA	L FIRE DIST	RICT #2		
Mapping		Purchaser First Name)				
		Purchaser Last Name	LINCOLI	APPLIED G	BEOLOGY		
		Well Use	OTHER				
		Well Reason	New Sup	ply			
		Drilling Method	Rotary (A	AP)			
		Well Depth	69.80 fee	et			
		Yield Gallons Per Min	ute 75.00				
		Yield Test Tested For Hours	0.00				
		Static Water Level	10.00 fee	et			
		Over Flowing	0				
		OverBurden Thicknes	s 0 feet				
		Casing Length	65.30 Tee	et			
		Casing Length Below	62.50 fee	es			
		Land Surrace	od 0.00				
		Casing Length Expose	ed 0.00				
		Casing Weight	20 25 lbc	/foot			
		Casing Weight		ound finishe	d		
		Liner Length	0.00 feet		4		
		Liner Diameter	0.00 inch	ies			
		Liner Material					
		Liner Weight	0.00 lbs/	foot			
		Grout Type	Neat Cer	ment			
		Seal Type					
		Diameter Drilled In	0.00 incł	ies			

Bedrock						
Depth Drill	ed in Bed	rock	0.00) feet		
Screen Ma	ake Type					
Screen Ma	aterial					
Screen Le	ngth		0.00) feet		
Screen Dia	ameter		0.00) inches		
Screen Slo	ot Size		0.00	0 inches		
Depth of S	creen		0.00) feet		
Gravel Siz	е Туре					
Casing Se	aling Meth	nod				
Yield Test	Method		pum	nped		
Well Deve	lopment					
Not Steel	Casing		0			
Water Ana	lysis		0			
Well Scree	en		0			
AW Partia	l		0			
Unique GI	S Name		PQ5	5243		
Lat Degree	Э		42			
Lat Minute	S		46			
Lat Secon	ds		14.3520			
Long Degr	ee		73			
Long Minu	tes		14			
Long Seco	onds		32.8020			
Location Determina	tionMetho	d	screen digitized			
Well Type			Gravel			
Depth To I	_iner Top		0.00			
Hydro Fra	ctured		0			
Hydro Fra Resulting I	ctured Flow		0.00			
Well Locat As A Dot C	ion Submi Dn A Map	tted	Ν			
Starting Depth	Ending Depth	Wa [:] Bear	ter ring	Lithology Code	Lithology Description	
0.00	1.00			D	LOAM	
1.00	6.00			Т	BROWN TILL	
6.00	12.00	7	5	GT	BROWN TILL WITH ROCKS	
12.00	62.00			СТ	BLUE CLAY, TILL	
62.00	70.00	7	5	G	GRAVEL, SOME TILL	

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

Www.VermontDrinkingWater.org VT DEC = Water Supply Division = 103 South Main Street, Old Pantry Building = Waterbury, VT 05671-0403

dee	c home 🔰 dec calendar	contact dec	topic index	sitemap	search
Water Supply D	Division				VT DEC
wsd home regulations	permits g	rants/loans	publications	calendar	contacts
6				do	bomes wed home
		ila			<u>s nome</u> > wsu nome
Critical Infrastructure Protection Information	vven Dela	115		0	iste Line ter
Permit, Certification &	Date Completed	06/25/1	1975	QU	ICK LINKS
License Application Forms	Date Received	02/06/1	980	List of	sed Well Drillers
Water System Capacity	Driller	29 Dav State V	rid Kessler Tri Vater Service	» Well D	Priller Licensing
Development & DWSRF	Well Report Number	156		Well D	PDF Driller License
Location Program	Tag			forms	
Source Water Protection	Comments				
Water System Operators	Town	Powna	I		(A) (C) (A)
Drinking Water Quality	Map Cell			Threa	t Level: Yellow
The TNC Handbook	Тах Мар				
Rules and Regulations	E911 Address				
Staff Directory	SubDivision				
News	Owners First Name				
News	Owners Last Name		RAII ER PARK		
Other Links of Interest	Purchaser First Name				
Resources GIS Internet	Purchaser Last Name				
Mapping	Well Use	Trailer	Park		
	Well Reason				
	Drilling Method	Other			
	Well Depth	170.00	feet		
	Yield Gallons Per Minut	te 15.00			
	Yield Test Tested For H	lours 0.00			
	Static Water Level	30.00 f	eet		
	Over Flowing	0			
	OverBurden Thickness	60 feet			
	Casing Length	61.00 f	eet		
	Casing Diameter	6.00 IN	cnes		
	Surface	0.00 fe	et		
	Casing Length Exposed	0.00 b			
	Casing Material				
	Casing Weight	0.00 lb	s/foot		
	Casing Finish				
	Liner Length	0.00 fe	et		
	Liner Diameter	0.00 in	ches		
	Liner Material	o oo "	15		
	Liner Weight	0.00 lb	s/toot		
	Grout Type				
	Diameter Drillod In Pod	rock 0.00 in	ches		
	Denth Drilled in Redroc		ones ot		
	Screen Make Type	. 0.00 le			

Screen Le	ngth		0.00 feet			
Screen Dia	ameter		0.00 inche	S		
Screen Slo	ot Size		0.000 inch	es		
Depth of S	Screen		0.00 feet			
Gravel Siz	е Туре					
Casing Se	aling Meth	nod				
Yield Test	Method		Compress	ed air		
Well Deve	lopment					
Not Steel	Casing		0			
Water Ana	alysis		0			
Well Scree	en		0			
AW Partia	I		0			
Unique GI	S Name		PQ156			
Lat Degree	Э		0	0		
Lat Minute	S		0			
Lat Secon	ds		0.0000			
Long Degr	ee		0			
Long Minu	ites		0			
Long Seco	onds		0.0000			
Location D	Determinat	ionMethod				
Well Type						
Depth To I	Liner Top		0.00			
Hydro Fra	ctured		0			
Hydro Fra	ctured Res	sulting Flow	0.00			
Well Locat Dot On A I	tion Subm Map	itted As A	Ν			
Starting Depth	Ending Depth	Water I Bearing	Lithology Code	Lithology Description		
0.00	10.00		G	gravel		
10.00	50.00		С	clay		
50.00	60.00		G	gravel		
60.00	170.00		R	shale quartz marble and granite		

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

Www.VermontDrinkingWater.org VT DEC = Water Supply Division = 103 South Main Street, Old Pantry Building = Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 = Fax: 802-241-3284 DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home State of Vermont Agencies & Depts. • Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State Librarian a ? A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

	deo	c home 🔰 dec calenda	ar con	tact dec	topic index	sitemap	search
Water Su	upply [Division					VT DEC
wsd home	regulations	permits	grants/loa	ans	publications	calendar	contacts
	C						
Water System O Permit, Certifica License Applica & Information Water System C Development & Well Driller & W Location Progra Source Water Pr Water System O Drinking Water O Drinking Water O Drinking Water O Staff Directory News Other Links of In Agency of Natur Resources GIS I Mapping	regulations regulations regulations apacity DWSRF ell mototection operators Quality ook lations	permits permits Purchaser First Name Purchaser First Name Purchaser First Name Purchaser First Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Vell Use Well Reason Drilling Method Well Depth Yield Gallons Per Min Yield Test Tested For Static Water Level Over Flowing OverBurden Thickness Casing Length Below Surface Casing Length Expose Casing Length Expose	grants/loa ails ute Hours s Land ed	ans 03/15/ 04/13/ 16 H A Artesia 73 Powna 19B3 NORT INC. Dome: Rotary 245.00 2.00 0.00 20.00 0 9 feet 20.00 0 9 feet 20.00 0 0 9 feet 20.00 0 0 9 feet 20.00 0 0 0 0 0 0 0 0 0 0 0 0	publications 1973 1973 1973 Allen Follett A & W an Well Co Inc al HERN TERMINAL stic (AP)) feet feet feet feet aches set bs/foot	calendar C N List Lice N Well Rule N Well form N Curr Thre	vr DEC contacts dec home > wsd home dec home > wsd home dec home > wsd home dec home > wsd home of Vermont nsed Well Drillers Driller Licensing a PDF Driller License is ent Nationwide at Level: Yellow
		Casing Finish Liner Length		0.00 fe	eet		
		Liner Diameter		0.00 ir	nches		
		Liner Material Liner Weight Grout Type		0.00 lk	os/foot		
		Seal Type Diameter Drilled In Be	drock	0 00 ir	iches		
		Depth Drilled in Bedro Screen Make Type	ock	0.00 fe	eet		

Screen Material				
Screen Length	0.00 feet			
Screen Diameter	0.00 inches			
Screen Slot Size	0.000 inches			
Depth of Screen	0.00 feet			
Gravel Size Type				
Casing Sealing Method	Drive shoe only			
Yield Test Method				
Well Development				
Not Steel Casing	0			
Water Analysis	0			
Well Screen	0			
AW Partial	0			
Unique GIS Name	PQ73			
Lat Degree	42			
Lat Minutes	45			
Lat Seconds	35.0281			
Long Degree	73			
Long Minutes	13			
Long Seconds	39.5460			
Location DeterminationMethod	screen digitized			
Well Type				
Depth To Liner Top	0.00			
Hydro Fractured	0			
Hydro Fractured Resulting Flow	0.00			
Well Location Submitted As A Dot On A Map	Ν			
Starting Ending Water Depth Depth Bearing	Lithology Lithol Code Descri	logy ption		
0.00 9.00	C cla	у		
9.00 245.00	R sha	le		

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

Www.VermontDrinkingWater.org VT DEC = Water Supply Division = 103 South Main Street, Old Pantry Building = Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 = Fax: 802-241-3284 DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home State of Vermont Agencies & Depts. • Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State Librarian a ? A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

✓ VERMONT.gov

Water Supply Division

			dec home d	ec calendar 🚺 contac	t dec topic index	sitemap search
Water Su	ipply (Division				VT DEC
wsd home	regulation	ns permits grants/lo	ans publication	s calendar	contacts	
	6					dec home > wsd home
Critical Infrastruc	turo	Well Details				
Protection Inform	ation	Date Completed	08/15/1978			Quick Links
Permit, Certificati License Applicati	on & on Forms	Date Received	04/02/1979			List of Vermont
& Information	n n n i i i	Driller	16 H Allen	Follett A & W Artesian	Well Co Inc	Licensed Well Drillers
Development & D	WSRF	Well Report Number	141			Rule PDF
Well Driller & Wel	1	Tag	12171			Well Driller License forms
Source Water Pro	tection	Comments	Downol			101113
Water System On	erators	Man Cell	19B3			
Drinking Water Q	uality	Тах Мар	1020			Current Nationwide Threat Level: Vellow
The TNC Handbo	ok	E911 Address				Threat Level. Tellow
Rules and Regula	itions	Subdivision				
Staff Directory		Lot Number				
Nows		Owners First Name	Maturski			
> Other Links of Int		Purchaser First Name	IVIALUI SKI			
Agency of Natura	l	Purchaser Last Name				
Resources GIS In	ternet	Well Use	Domestic			
wapping		Well Reason				
		Drilling Method	Rotary (AP)		
		Well Depth Viold Collops Por Minuto	230.00 fee			
		Yield Test Tested For Hours	2.00			
		Static Water Level	30.00 feet			
		Over Flowing	0			
		Overburden Thickness	50 feet			
		Casing Length	60.00 feet			
		Casing Diameter	6.00 inches	i		
		Casing Length Exposed	0.00 leel			
		Casing Material	0.00			
		Casing Weight	0.00 lbs/foo	ot		
		Casing Finish				
		Liner Length	0.00 feet			
		Liner Diameter	0.00 inches	5		
		Liner Weight	0.00 lbs/fo	ot		
		Grout Type	0100 120/100			
		Seal Type				
		Diameter Drilled In Bedrock	0.00 inches	5		
		Depth Drilled in Bedrock	0.00 feet			
		Screen Make Type				
		Screen Length	0.00 feet			
		Screen Diameter	0.00 inches	5		
		Screen Slot Size	0.000 inche	es		
		Depth of Screen	0.00 feet			
		Gravel Size Type	Drilled held	in hadr		
		Vield Test Method	Diffied for	in bear		
		Well Development				
		Not Steel Casing	0			
		Water Analysis	0			
		Well Screen	0			
		AW Partial	U PO141			
		Lat Degree	FQ141 42			
		Lat Minutes	45			
		Lat Seconds	9.0541			
		Long Degree	73			
		Long Minutes	14			
		Long Seconds	14.9040	iizod		
		Well Type	screen digi			
		Depth To Liner Top	0.00			
		Hydro Fractured	0			
		Hydro Fractured Resulting Flow	0.00			

36

Well Location Submitted As A Dot On A Map N						
WellMainRecordNumber	StartingDepth	EndingDepth	WaterBearing LithologyCode	LithologyDescription		
45998	0.00	50.00	Н	hardpan		
45998	50.00	230.00	R	shale		

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

www.VermontDrinkingWater.org VT DEC = Water Supply Division = 103 South Main Street, Old Pantry Building = Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 = Fax: 802-241-3284

DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home

<u>State of Vermont Agencies & Depts.</u> Access Government 24/7 About Vermont.Gov Privacy Policy Ask a State Librarian a ? A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

VERMONT.gov

_	deo	c home dec calend	lar cont	act dec	topic index	sitemap	search
Water Su	upply [Division					VT DEC
wsd home	regulations	permits	grants/loa	ns	publications	calendar	contacts
	6		aile			de	ec home > wsd home
 Critical Infrastruc Protection Inform Permit, Certificat License Applicat & Information Water System Ca Development & D Well Driller & We Location Program Source Water Program Water System Op Drinking Water Co The TNC Handboo Rules and Regula 	cture nation tion & tion Forms apacity DWSRF II m otection perators Quality pok ations	Date Completed Date Received Driller Well Report Number Tag Comments Town Map Cell Tax Map E911 Address SubDivision		07/24/1 09/17/1 16 H Al Artesia 146 Pownal 19B3	979 979 Ien Follett A & W n Well Co Inc	Qu > List o Licen > Well I Rule > Well I forms > Curre Threa	nick Links f Vermont sed Well Drillers Driller Licensing PDF Driller License at Level: Yellow
 > Rules and Regulations > Staff Directory > News > Other Links of Interest > Agency of Natural Resources GIS Internet Mapping 		SubDivision Lot Number Owners First Name Owners Last Name Purchaser First Name Purchaser Last Name Well Use Well Reason Drilling Mathed		DANIE HATCH	L S. 1		
		Well Depth Yield Gallons Per Min Yield Test Tested Fo Static Water Level Over Flowing OverBurden Thicknes Casing Length Casing Diameter Casing Length Below	nute r Hours ss / Land	340.00 0.00 0.00 fe 0 90 feet 100.00 6.00 inc	feet et feet ches		
		Surface Casing Length Expos Casing Material Casing Weight Casing Finish	sed	0.00 0.00 lbs	s/foot		
		Liner Length Liner Diameter Liner Material Liner Weight		0.00 fe 0.00 ind 0.00 lbs	et ches s/foot		
		Grout Type Seal Type Diameter Drilled In B Depth Drilled in Bedr Screen Make Type Screen Material	edrock ock	0.00 ind 0.00 fe	ches et		

Screen Length	0.00 feet			
Screen Diameter	0.00 inches			
Screen Slot Size	0.000 inches	6		
Depth of Screen	0.00 feet			
Gravel Size Type				
Casing Sealing Method	Drive shoe of	only		
Yield Test Method		-		
Well Development				
Not Steel Casing	0			
Water Analysis	0			
Well Screen	0			
AW Partial	0			
Unique GIS Name	PQ146			
Lat Degree	42			
Lat Minutes	45			
Lat Seconds	34.3801			
Long Degree	73			
Long Minutes	12			
Long Seconds	31.8360			
Location DeterminationMethod	screen digiti	zed		
Well Type				
Depth To Liner Top	0.00			
Hydro Fractured	0			
Hydro Fractured Resulting Flow	0.00			
Well Location Submitted As A Dot On A Map	Ν			
Starting Ending Water Depth Depth Bearing	Lithology Code	Lithology Description		
0.00 90.00	н	hardpan and clay		
90.00 340.00	R	rock		

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

 www.VermontDrinkingWater.org

 VT DEC = Water Supply Division = 103 South Main Street, Old Pantry Building = Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 = Fax: 802-241-3284

 DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home

 State of Vermont Agencies & Depts.
 Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State Librarian a ?

 A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

Watch Supply Division Call of a state of a	de	c home dec calendar	contact dec topic index	sitemap search
verdeme regulations permits grants/max publications centered detereme - Critical Infrastructure Permit, certification of Licensee Applications Centered 0/00/1975 double	Water Supply [Division		VT DEC
Critical Infrastructure Premic, Critication a Lication Information Nater System Capacity Development & DUWSRP Valuer System Operators Dirtiking Water Quality The TNC Handbook Subdr Dirtors Subf Dirtors Last Name Development State Water State Water Service Subf Dirtors Subf Dirtors Dirtors Subf Dirtors Subf Dirtors Subf Dirtors Dirtors Subf Dirtors Subf Dirtors Dirtors Dirtors Dirtors Dirtors Dirtors Dirtors Dirtors Dirtors Dirtors Dirtors Dirtors Dirtors Dirtors Dirtor	wsd home regulations	permits grants	/loans publications	calendar contacts
 Critical Infrastructure Protection Information Pernit, Certification 6 Determs 2008/1980 Liesta Application Formis Meter System Operators Water System Operators Water System Operators Water System Operators Water Cuality The TNC Handbook Stafe Water Cuality The TNC Handbook Stafe Vater Cuality Tax Map Ebi11 Address SubDivision Stafe Vater Cuality Purchaser First Name Purchaser First Name Purchaser First Name Purchaser First Name Purchaser Last Name Outer Use Outer Hinks Differ Casing Diameter Guo Disches Casing Diameter Casing Length Liner Diameter Pilled In Bedrock Outo Inches Casing Finish Liner Weight Outo Inches Dettrice Haderial Liner Weight Outo Inches Streen Material 	6			
Potentic of information butching carried to a field of the completed of 02(06/1975 Outle Completed 02(06/1975 Outle Charts State Water State Water Capacity Development & DWSRF Weil Dirler & Weil Report Number Location Program Driller 29 David Kessler Tri State Water Stervice > List of Vermont Licensed Weil Driller Licensing Rule PDF Water System Operators Town Pownal > Weil Driller Licensing Rule PDF > Weil Driller Licensing Rule PDF Water System Operators Town Pownal 19B3 > Mell Schlifter Licensing Rule PDF Drinking Water Quality Map Cell 19B3 > Mell Schlifter Licensing Rule PDF > Current Nationwide Triveat Level: Yellow Staff Directory Lot Number Owners First Name DSCARSON > Current Nationwide Triveat Level: Yellow Other Links of Interest Mapping News Owners First Name Domestic Weil Reason Drilling Method Other Viel Gallons Per Minute 8.00 > Static Water Level 0.00 feet Vield Gallons Per Minute Casing Lingth Exposed 0.00 > Out feet Out feet Casing Lingth Keposed 0.00 inches Casing Lingth Relow Land 0.00 lexfoot Casing Lingth Relow Land Suffice Lines Sing Lingth Relow Land Suffice Lines Sing	Critical Infrastructure	Well Details	5	dec home > wsd home
 Well Driller & Well Well Nepfort Values Well Protection Source Water Protection Comments Tay Map Drinking Water Quality Tax Map The TNC Handbook E911 Address StubDivision Staff Directory News Other Links of Interest Agency of Natural Resources GIS Internet Well Depth Well Opth Ulse Dornestic Well Reason Drilling Method Other Well Opth Vield Gallons Per Minute 8.00 Yield Gallons Per Minute 0.00 feet Over Flowing Over Burden Thickness 10 feet Casing Length Casing Length Cool Inches Casing Weight O.00 feet Casing Weight Outor Inches Liner Linke of Interest Diagency of Natural Resources GIS Internet Well Use Domestic Well Use Corrent Nationwide Stafic Water Level Over Flowing Outor Thickness Differt Level Outor Thickness Outor Flowing Casing Weight Outor Flowing Casing Weight Outor Flowing Seal Type Diamet	 Permit, Certification & License Application Forms & Information Water System Capacity Development & DWSRF 	Date Completed Date Received Driller	06/02/1975 02/06/1980 29 David Kessler Tri State Water Service	Quick Links >> List of Vermont Licensed Well Drillers >> Well Driller Licensing Rule PDF
> Water Protection Comments > Water System Operators Town Pownal > Drinking Water Quality Map Cell 19B3 > The TNC Handbook E911 Address SubDivision > Staff Directory Lot Number Dernking Water System Operators > Owners First Name DERTIL Owners First Name > Owners Cast Name OSCARSON > Agency of Natural Resources CIS Internet Mapping Purchaser Last Name Domestic Well Reason Drilling Method Other Well Depth 115.00 feet Yield Galons Per Minute Vield Test Tested For Hours 0.00 Static Water Level Over Flowing 0 Overest Casing Length 16.00 feet Over Burden Thickness 10 feet Casing Length 6.00 inches Casing Length 0.00 feet Casing Length 0.00 feet Casing Length 0.00 feet Casing Length Liner Length 0.00 les/foot Casing Meterial Liner Weight 0.00 los/foot Casing Length Erype Seal Type Diameter Drilled in Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 inches	Well Driller & Well Location Program	Tag	100	Well Driller License forms
 Water System Operators Drinking Water Quality Map Cell Tax Map EH1 Address Stubivision Staff Directory Lot Number Owners First Name Agency of Natural Resources GIS Internet Mapping Weil Use Weil Use Weil Use Weil Beson Drilling Method Vield Test Tested For Hours Over Flowing Ov	Source Water Protection	Comments		
) Drinking Water Quality Tax Map The TNC Handbook E911 Address SubDivision 3 Staff Directory) Owners First Name Devs Owners First Name Purchaser Last Name Well Use Domestic Well Use Well Use Domestic Well Reason Drilling Method Other Vield Gallons Per Minute 8.00 Vore Flowing Over Flowing Outreater Casing Length It 6:00 feet Casing Length Exposed O.00 Casing Length Exposed Liner Length Liner Length Liner Length Liner Metrial Liner Weight Diol liner Weight Diol bis/foot Grout Type Seal Type Diameter Dilled In Bedrock O.00 feet Screen Mate Type Screen Mater Type Sc	Water System Operators	Town Map Cell	Pownal	Current Nationwide
The TNC Handbook E911 Address Putes and Regulations SubDivision Staff Directory Lot Number News Owners First Name DSCARSON Other Links of Interest Owners Last Name OSCARSON Agency of Natural Resources GIS Internet Mapping Purchaser First Name Domestic Well Use Domestic Well Reason D'lilling Method Other Well Depth Vield Gallons Per Minute 8.00 Yield Test Tested For Hours Over Flowing 0 Over Flowing 0 Over Flowing 0 Over Flowing 0 Over Flowing 0.00 feet Casing Length 16.00 feet Casing Length 16.00 feet Casing Length Exposed 0.00 Casing Length Exposed 0.00 casing Weight 0.00 lbs/foot Casing Length Exposed 0.00 feet Liner Length Liner Meterial Liner Material Liner Weight 0.00 lbs/foot Casing Firish Liner Meterial Liner Weight 0.00 lbs/foot Casing Firish Liner Weight 0.00 lbs/foot Gasing Tripe Einer	Drinking Water Quality	Tax Man	1903	Threat Level: Yellow
Rules and Regulations SubDivision Istif Directory Lot Number News Owners First Name OSCARSON Other Links of Interest Owners Last Name OSCARSON Agency of Natural Resources GIS Internet Mapping Purchaser Last Name Domestic Well Was Domestic Well Reason Uniting Method Other Well Reason Vield Gallons Per Minute 8.00 Yield Gallons Per Minute Vield Test Tested For Hours 0.00 Static Water Level 0.00 feet Over Flowing 0 Over Flowing 0 Over Buden Thickness 10 feet Casing Length 16.00 feet Casing Length Below Land Surface 0.00 feet Casing Meterial Casing Meterial Liner Length 0.00 feet Casing Meterial Liner Length 0.00 feet Liner Length 0.00 feet Casing Finish Liner Length Liner Length 0.00 feet Liner Weight 0.00 lbs/foot Casing Tripe Liner Weight 0.00 lbs/foot Casing Tripe Liner Weight 0.00 lbs/foot Screen Material Liner Weight 0.00 lbs/foot<	The TNC Handbook	E911 Address		
Staff Directory Lot Number News Owners First Name BERTIL Owners Last Name OSCARSON Agency of Natural Resources GIS Internet Mapping Purchaser First Name Well Use Domestic Well Reason Urchaser First Name Purchaser Last Name Well Vse Well Reason Drilling Method Vield Callons Per Minute 8.00 Yield Callons Per Minute 8.00 Vield Test Tested For Hours 0.00 feet Over Flowing 0 Over Flowing 0 Over Flowing 0 Over Flowing 0.00 feet Casing Length 10 feet Casing Length Below Land 0.00 feet Surface 0.00 Casing Length Below Land 0.00 feet Casing Length Below Land 0.00 feet Casing Material Liner Length 0.00 feet Casing Material Liner Length 0.00 inches Liner Metinal Liner Weight 0.00 inches Liner Weight 0.00 inches Liner Weight Liner Weight 0.00 inches </td <td>Rules and Regulations</td> <td>SubDivision</td> <td></td> <td></td>	Rules and Regulations	SubDivision		
News Owners First Name BERTIL Other Links of Interest Owners Last Name OSCARSON Purchaser First Name Purchaser First Name News Purchaser Cast Name Purchaser Last Name News Well Use Domestic News Well Veason Domestic News Viell Reason Drilling Method Other Vield Gallons Per Minute 8.00 No0 feet Yield Test Tested For Hours 0.00 feet Over Flowing Over Flowing 0 Over Flowing 0 Over Flowing 0.00 feet Casing Length 16.00 feet Casing Length Below Land 0.00 feet Casing Length Exposed 0.00 Casing Length Exposed 0.00 Casing Material Casing Metrial Casing Weight 0.00 los/foot Casing Finish Liner Length 0.00 inches Liner Diameter 0.00 los/foot Casing Time Finish Liner Material Liner Material Liner Weight 0.00 los/foot Casing Time Finish Liner Material Diameter Drilled In	Staff Directory	Lot Number		
Other Links of Interest Owners Last Name OSCARSON Agency of Natural Resources GIS Internet Purchaser First Name Purchaser Last Name Verlaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Domestic Well Use Domestic Well Name Well Vell Vell Name Noners Drilling Method Other Well Name Yield Galions Per Minute 8.00 Noners Yield Test Tested For Hours 0.00 Static Water Level 0.00 Over Flowing 0 Over Flowing 0 Over Burden Thickness 10 feet Casing Length Below Land Sufface Surface Casing Length Below Land 0.00 feet Casing Material Casing Length Exposed 0.00 lbs/foot Casing Finish Liner Length Liner Length 0.00 lbs/foot Casing Finish Liner Weight 0.00 lbs/f	News	Owners First Name	BERTIL	
Agency of Natural Resources GIS Internet Mapping Purchaser First Name Purchaser Last Name Purchaser Last Name Well Use Domestic Well Use Domestic Well Reason Drilling Method Vield Gallons Per Minute 8.00 Yield Gallons Per Minute 8.00 Yield Test Tested For Hours 0.00 Static Water Level 0.00 feet Over Flowing 0 OverBurden Thickness 10 feet Casing Length 16.00 feet Casing Length Below Land 0.00 feet Surface 0.00 Casing Length Exposed 0.00 Casing Length Exposed 0.00 Casing Material Casing Veight Casing Veight 0.00 feet Liner Length 0.00 los/foot Casing Veight 0.00 inches Liner Material Liner Material Liner Weight 0.00 los/foot Graut Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material	Other Links of Interest	Owners Last Name	OSCARSON	
Resources GIS Internet Mapping Purchaser Last Name Well Use Domestic Well Reason Drilling Method Drilling Method Other Well Depth 115.00 feet Yield Gallons Per Minute 8.00 Yield Test Tested For Hours 0.00 Static Water Level 0.00 feet Over Flowing 0 Over Flowing 0 Over Burden Thickness 10 feet Casing Length 16.00 feet Casing Length 0.00 feet Surface 0.00 Casing Kerjal 0.00 feet Casing Weight 0.00 los/foot Casing Weight 0.00 los/foot Casing Finish Liner Length Liner Length 0.00 feet Liner Weight 0.00 los/foot Casing Finish Liner Meterial Liner Weight 0.00 los/foot Grout Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled In Bedrock 0.00 feet Screen Make Type Screen Make Type	Agency of Natural	Purchaser First Name		
MappingWell OseDomesticWell ReasonDrilling MethodOtherWell Depth115.00 feetYield Gallons Per Minute8.00Yield Test Tested For Hours0.00Static Water Level0.00 feetOver Flowing0OverBurden Thickness10 feetCasing Length16.00 feetCasing Length Below Land0.00 feetSurface0.00 feetCasing Metrial0.00Casing Metrial0.00 feetCasing FinishLiner LengthLiner Length0.00 feetLiner Material0.00 leetLiner Weight0.00 los/footGrout TypeSeal TypeDiameter Drilled In Bedrock0.00 inchesDepth Drilled in Bedrock0.00 feetScreen Make TypeScreen Make TypeScree	Resources GIS Internet	Purchaser Last Name		
Weil ReasonDrilling MethodOtherWeil Depth115.00 feetYield Gallons Per Minute8.00Yield Test Tested For Hours0.00Static Water Level0.00 feetOver Flowing0OverBurden Thickness10 feetCasing Length16.00 feetCasing Length Below Land Surface0.00 feetCasing Length Exposed0.00 feetCasing Material0.00 lbs/footCasing FinishLiner LengthLiner Length0.00 feetLiner MaterialUiner MaterialLiner MaterialUiner MaterialLiner Seal TypeSeal TypeDiameter Drilled In Bedrock0.00 feetScreen Make TypeScreen Make Type	mapping	Well Use	Domestic	
Driving inductionOutputWell Depth115.00 feetYield Gallons Per Minute8.00Yield Test Tested For Hours0.00Static Water Level0.00 feetOver Flowing0OverBurden Thickness10 feetCasing Length16.00 feetCasing Length Below Land0.00 feetSurface0.00 feetCasing Length Exposed0.00 feetCasing Material0.00 lbs/footCasing FinishLiner LengthLiner Length0.00 feetLiner MeterialLiner WeightLiner Weight0.00 lbs/footGrout TypeSeal TypeDiameter Drilled In Bedrock0.00 inchesDepth Drilled in Bedrock0.00 feetScreen Make TypeScreen Make TypeSc		Drilling Method	Other	
Yield Gallons Per Minute 8.00 Yield Test Tested For Hours 0.00 Static Water Level 0.00 feet Over Flowing 0 OverBurden Thickness 10 feet Casing Length 16.00 feet Casing Length 86.00 inches Casing Length Below Land Surface 0.00 Casing Length Exposed 0.00 Casing Material Casing Weight 0.00 lbs/foot Casing Finish Liner Length 0.00 feet Liner Diameter 0.00 inches Liner Weight 0.00 lbs/foot Grout Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Make Type		Well Denth	115 00 feet	
Yield Test Tested For Hours0.00Static Water Level0.00 feetOver Flowing0OverBurden Thickness10 feetCasing Length16.00 feetCasing Diameter6.00 inchesCasing Length Below Land Surface0.00 feetCasing Length Exposed0.00Casing Material0.00 lbs/footCasing Weight0.00 lbs/footCasing FinishLiner LengthLiner Diameter0.00 inchesLiner Weight0.00 lbs/footGrout TypeSeal TypeDiameter Drilled In Bedrock0.00 inchesDepth Drilled in Bedrock0.00 feetScreen MaterialScreen MaterialScreen Material0.00 feetScreen Material0.00 inchesDepth Drilled in Bedrock0.00 feetScreen Material0.00 feetScreen Material <td< td=""><td></td><td>Yield Gallons Per Minute</td><td>8.00</td><td></td></td<>		Yield Gallons Per Minute	8.00	
Static Water Level0.00 feetOver Flowing0OverBurden Thickness10 feetCasing Length16.00 feetCasing Diameter6.00 inchesCasing Length Below Land Surface0.00 feetCasing Length Exposed0.00 feetCasing Material0.00 lbs/footCasing FinishLiner LengthLiner Length0.00 feetLiner Weight0.00 lbs/footGrout TypeSeal TypeSeal TypeDiameter Dilled in BedrockDiameter Drilled in Bedrock0.00 feetScreen Make TypeScreen MaterialScreen MaterialScreen Material		Yield Test Tested For Hours	s 0.00	
Over Flowing0OverBurden Thickness10 feetCasing Length16.00 feetCasing Diameter6.00 inchesCasing Length Below Land Surface0.00 feetCasing Length Exposed0.00Casing Material0.00 lbs/footCasing Finish0.00 feetLiner Length0.00 feetLiner Material0.00 feetLiner Material0.00 feetLiner Diameter0.00 inchesLiner Material0.00 inchesLiner Material0.00 lbs/footGrout TypeSeal TypeSeal Type0.00 inchesDiameter Drilled In Bedrock0.00 inchesDepth Drilled in Bedrock0.00 feetScreen Make TypeScreen Make TypeScreen Make TypeScreen Material		Static Water Level	0.00 feet	
OverBurden Thickness10 feetCasing Length16.00 feetCasing Diameter6.00 inchesCasing Length Below Land Surface0.00 feetCasing Length Below Land Surface0.00 feetCasing Length Exposed0.00Casing Material0.00 lbs/footCasing Finish0.00 feetLiner Length0.00 feetLiner Diameter0.00 inchesLiner Weight0.00 lbs/footGrout TypeSeal TypeDiameter Drilled In Bedrock0.00 inchesDepth Drilled in Bedrock0.00 feetScreen Make TypeScreen Make TypeScreen Make TypeScreen Make Type		Over Flowing	0	
Casing Length16.00 feetCasing Diameter6.00 inchesCasing Length Below Land Surface0.00 feetCasing Length Exposed0.00Casing Material0.00 lbs/footCasing Weight0.00 lbs/footCasing Finish1.00 feetLiner Length0.00 lbs/footLiner Material0.00 lbs/footLiner Weight0.00 lbs/footGrout TypeSeal TypeDiameter Drilled In Bedrock0.00 inchesDepth Drilled in Bedrock0.00 inchesScreen Make TypeScreen Make TypeScreen Make TypeScreen Make Type		OverBurden Thickness	10 feet	
Casing Diameter6.00 inchesCasing Length Below Land Surface0.00 feetCasing Length Exposed0.00Casing Material0.00 lbs/footCasing Weight0.00 lbs/footCasing Finish1.00 feetLiner Length0.00 feetLiner Diameter0.00 inchesLiner Material1.00 lbs/footGrout TypeSeal TypeDiameter Drilled In Bedrock0.00 inchesDepth Drilled in Bedrock0.00 feetScreen Make TypeScreen Material		Casing Length	16.00 feet	
Casing Length Below Land Surface0.00 feetCasing Length Exposed0.00Casing Material0.00 lbs/footCasing Weight0.00 lbs/footCasing Finish100 feetLiner Length0.00 inchesLiner Diameter0.00 lbs/footGrout TypeSeal TypeDiameter Drilled In Bedrock0.00 inchesDepth Drilled in Bedrock0.00 feetScreen Make TypeScreen Material		Casing Diameter	6.00 inches	
Casing Length Exposed0.00Casing Material0.00 lbs/footCasing Weight0.00 lbs/footCasing Finish0.00 feetLiner Length0.00 inchesLiner Diameter0.00 lbs/footGrout Type0.00 lbs/footSeal TypeSeal TypeDiameter Drilled In Bedrock0.00 inchesDepth Drilled in Bedrock0.00 feetScreen Make TypeScreen Material		Casing Length Below Land Surface	0.00 feet	
Casing Weight 0.00 lbs/foot Casing Finish Liner Length 0.00 feet Liner Diameter 0.00 inches Liner Material Liner Weight 0.00 lbs/foot Grout Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Casing Length Exposed Casing Material	0.00	
Casing Finish Liner Length 0.00 feet Liner Diameter 0.00 inches Liner Material Liner Weight 0.00 lbs/foot Grout Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Casing Weight	0.00 lbs/foot	
Liner Length 0.00 feet Liner Diameter 0.00 inches Liner Material Liner Weight 0.00 lbs/foot Grout Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Casing Finish		
Liner Diameter 0.00 inches Liner Material Liner Weight 0.00 lbs/foot Grout Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Liner Length	0.00 feet	
Liner Material Liner Weight 0.00 lbs/foot Grout Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Liner Diameter	0.00 inches	
Liner Weight 0.00 lbs/foot Grout Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Liner Material		
Grout Type Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Liner Weight	0.00 lbs/foot	
Seal Type Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Grout Type		
Diameter Drilled In Bedrock 0.00 inches Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Seal Type		
Depth Drilled in Bedrock 0.00 feet Screen Make Type Screen Material		Diameter Drilled In Bedrock	0.00 inches	
Screen Make Type Screen Material		Depth Drilled in Bedrock	0.00 feet	
		Screen Material		

Screen Ler	ngth		0.00 feet			
Screen Dia	meter		0.00 inches	;		
Screen Slo	t Size		0.000 inche	s		
Depth of S	creen		0.00 feet			
Gravel Size	е Туре					
Casing Sea	aling Meth	od				
Yield Test	Method		Compresse	ed air		
Well Devel	opment					
Not Steel C	Casing		0			
Water Ana	lysis		0			
Well Scree	n		0			
AW Partial			0			
Unique GIS	S Name		PQ155	PQ155		
Lat Degree	;		42			
Lat Minutes	S		45			
Lat Second	ds		32.5440			
Long Degr	ee		73			
Long Minut	tes		14			
Long Seco	nds		32.6580			
Location D	eterminati	onMethod	screen digit	lized		
Well Type						
Depth To L	iner Top		0.00			
Hydro Frac	tured		0			
Hydro Fractured Resulting Flow			0.00			
Well Locati Dot On A N	ion Submit /Iap	tted As A	Ν			
Starting Depth	Ending Depth	Water Bearing	Lithology Code	Lithology Description		
0.00	10.00		D	soil		
10.00	115.00		R	schist ledge		

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

 www.VermontDrinkingWater.org

 VT DEC = Water Supply Division = 103 South Main Street, Old Pantry Building = Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 = Fax: 802-241-3284

 DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home

 State of Vermont Agencies & Depts.
 • Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State Librarian a?

 A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

VERMONT.gov

-	dec home dec calendar c	ontact dec topic index	sitemap	search
Water Supp	bly Division			VT DEC
wsd home regu	lations permits grants	loans publications	calendar	contacts
			de	<u>c home</u> > wsd home
Critical Infrastructure	VVell Details			
Protection Information	Date Completed	09/18/1987	Qu	ick Links
License Application &	orms Date Received	12/28/1987	» List of	Vermont
& Information	Driller	16 H Allen Follett A & W	Licens	sed Well Drillers
Water System Capacity Development & DWSRI	F	Artesian Well Co Inc	Rule	PDF
Well Driller & Well	Well Report Number	234	» Well D	Driller License
Location Program	Tag		forms	
Source Water Protectio	on Comments			
Water System Operator	rs Iown	Pownal	» Curre	nt Nationwide
Drinking Water Quality		2041	Threa	t Level: Yellow
The TNC Handbook	F911 Address			
> Rules and Regulations	SubDivision			
Staff Directory	Lot Number			
News	Owners First Name	Α.		
Other Links of Interest	Owners Last Name	Lussier		
Agency of Natural	Purchaser First Name			
Resources GIS Internet	t Purchaser Last Name			
Mapping	Well Use	Domestic		
	Well Reason	New Supply		
	Drilling Method	Rotary (AP)		
	Well Depth	305.00 feet		
	Yield Gallons Per Minute	2.00		
	Yield Test Tested For Hours	0.00		
	Static Water Level	0.00 feet		
		0		
	OverBurden Thickness	62 TEET		
	Casing Length	102.00 leet		
	Casing Length Relow Land			
	Surface	0.00 feet		
	Casing Length Exposed	0.00		
	Casing Material			
	Casing Weight	0.00 lbs/foot		
	Casing Finish	Above ground, finished		
	Liner Length	0.00 feet		
	Liner Diameter	0.00 inches		
	Liner Material			
	Liner Weight	0.00 lbs/foot		
	Sear Lype	0.00 in ch		
	Diameter Drilled in Bedrock			
		U.UU leet		
	Screen Material			
	Oursen material			

Screen Length 0.00 fe			0.00 feet		
Screen Diameter			0.00 inches		
Screen Slot Size			0.000 inches		
Depth of Screen			0.00 feet		
Gravel Size	е Туре				
Casing Sealing Method			Drive shoe	only	
Yield Test Method			Compresse	d air	
Well Devel	opment				
Not Steel Casing			0		
Water Analysis			0		
Well Screen			0		
AW Partial			0		
Unique GIS Name			PQ234		
Lat Degree			42		
Lat Minutes			44		
Lat Seconds			49.0501		
Long Degree			73		
Long Minutes			14		
Long Seco	nds	13.0920			
Location D	eterminatio	onMethod	screen digitized		
Well Type					
Depth To Liner Top			0.00		
Hydro Fractured			0		
Hydro Fractured Resulting Flow			0.00		
Well Location Submitted As A Dot On A Map			Ν		
Starting Depth	Ending Depth	Water Bearing	Lithology Code	Lithology Description	
0.00	62.00	-	SI	sand and silt	
62.00	305.00		R	granite	

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

 www.VermontDrinkingWater.org

 VT DEC * Water Supply Division = 103 South Main Street, Old Pantry Building * Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 * Fax: 802-241-3284

 DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home

 State of Vermont Agencies & Depts.
 • Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State Librarian a ?

 A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

-	dec home dec calendar	contact dec 🍸 topic index	sitemap	search			
Water Supply Division VT DEC							
wsd home regu	lations permits grants	loans publications	calendar	contacts			
			de	<u>c home</u> > wsd home			
Critical Infrastructure Well Details							
Protection Information	Date Completed	09/16/1987	Qu	ick Links			
License Application &	ms Date Received	12/28/1987	» List of	Vermont			
& Information	Driller	16 H Allen Follett A & W	Licens	ed Well Drillers			
Development & DWSRF		Artesian Well Co Inc	Rule F	PDF			
Well Driller & Well	Well Report Number	235	» Well D	riller License			
Location Program			torms				
Source water Protectio	Town	Downol					
Water System Operator	rs Town Map Cell	20A1	» Currer	nt Nationwide			
Drinking Water Quality	Tax Man	an ZUAT <u>Threat Lev</u>		Level: Yellow			
The TNC Handbook	E911 Address	F911 Address					
Rules and Regulations	SubDivision						
Staff Directory	Lot Number						
News	Owners First Name	Jon D.					
Other Links of Interest	Owners Last Name	Peaslee					
Agency of Natural	Purchaser First Name						
Resources GIS Internet	Purchaser Last Name						
Mapping	Well Use	Domestic					
	Well Reason	New Supply					
	Drilling Method	Rotary (AP)					
	Well Depth	505.00 feet					
	Yield Gallons Per Minute	0.00					
	Static Water Level	6 0.00					
	Over Flowing	0.00 leet					
	OverBurden Thickness	97 feet					
	Casing Length	using Length 122.00 feet					
	Casing Diameter	6.00 inches					
	Casing Length Below Land Surface	0.00 feet					
	Casing Length Exposed	0.00					
	Casing Material						
	Casing Weight	0.00 lbs/foot					
	Casing Finish	Above ground, finished					
	Liner Length	0.00 feet	0.00 feet				
	Liner Diameter	0.00 inches					
	Liner Material						
	Liner Weight	0.00 lbs/foot					
	Seal Type	0.00 inches					
	Diameter Drilled in Bedrock	0.00 Inches					
	Depth Drillea in Bearock	0.00 leet					
	Screen Material						
Screen Ler	ngth		0.00 feet				
---	-----------------	------------------	-------------------	--------------------------	--	--	
Screen Dia	ameter		0.00 inches				
Screen Slo	t Size		0.000 inche	S			
Depth of S	creen		0.00 feet				
Gravel Size	е Туре						
Casing Sea	aling Meth	od	Drive shoe of	only			
Yield Test	Method		Compresse	d air			
Well Devel	opment						
Not Steel C	Casing		0				
Water Ana	lysis		0				
Well Scree	n		0				
AW Partial			0				
Unique GIS	S Name		PQ235				
Lat Degree	;		42				
Lat Minute	S		44				
Lat Second	ds		47.4600				
Long Degr	ee		73				
Long Minut	tes		13				
Long Seco	nds		57.0000				
Location D	eterminati	onMethod	screen digiti	zed			
Well Type							
Depth To L	iner Top		0.00				
Hydro Frac	ctured		0				
Hydro Frac Flow	tured Res	ulting	0.00				
Well Location Submitted As A Dot On A Map			Ν				
Starting Depth	Ending Depth	Water Bearing	Lithology Code	Lithology Description			
0.00	97.00		SI	sand, silt			
97.00	505.00		R	granite			

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

 www.VermontDrinkingWater.org

 VT DEC * Water Supply Division = 103 South Main Street, Old Pantry Building * Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 * Fax: 802-241-3284

 DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home

 State of Vermont Agencies & Depts.
 • Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State Librarian a ?

 A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

	dec	home 🔰 dec calend	lar con	tact de	c topic index	sitemap	search
Water Su	upply [Division					VT DEC
wsd home	regulations	permits	grants/loa	ans	publications	calendar	contacts
	r					d	as home , wed home
			a:la			<u>u</u>	<u>ec nome</u> > wsd nome
 Critical Infrastru Protection Infor Permit, Certifica License Applica & Information Water System C Development & Well Driller & We Location Progra Source Water Pr Water System O Drinking Water O Drinking Water O The TNC Handbo Rules and Regu Staff Directory News Other Links of In Agency of Natur Resources GIS I Mapping 	Conture mation tion & tion Forms apacity DWSRF ell motection perators Quality book lations hterest ral nternet	Well Detains Date Completed Date Received Driller Well Report Number Tag Comments Town Map Cell Tax Map E911 Address SubDivision Lot Number Owners First Name Owners Last Name Purchaser First Name Owners Last Name Purchaser First Name Purchaser First Name Purchaser Last Name Purchaser Last Name Purchaser Last Name Vell Use Well Reason Drilling Method Well Depth Yield Gallons Per Min Yield Test Tested Fo Static Water Level Over Flowing OverBurden Thickne Casing Length Casing Length Below Surface Casing Length Expose Casing Material Casing Weight Casing Weight Casing Finish Liner Length Liner Diameter Liner Material Liner Weight Grout Type Seal Type	e e e nute r Hours ss v Land sed	04/25 05/24 16 H , Artesi 270 22714 Pown 19B3 Leigh Lopre Dome New S Rotar 500.0 0.00 6.00 f 0.00 6.00 f 0.00 f 0.	/1990 /1990 Allen Follett A & W an Well Co Inc 4 al estic Supply y (AP) 0 feet eet eet eet bs/foot eet nches eet bs/foot bs/foot	Q » List of Licer » Well forma » Curre Thre	ec home > wsd home
		Depth Drilled in Bedr	ock	0.00 f	eet		
		Screen Make Type Screen Material					

Screen Ler	ngth		0.00 feet		
Screen Diameter			0.00 inches		
Screen Slo	t Size		0.000 inches	6	
Depth of So	creen		0.00 feet		
Gravel Size	е Туре				
Casing Sea	aling Meth	od	Drive shoe of	only	
Yield Test I	Method		Compressed	d air	
Well Develo	opment				
Not Steel C	asing		0		
Water Anal	ysis		0		
Well Scree	n		0		
AW Partial			0		
Unique GIS	S Name		PQ270		
Lat Degree			42		
Lat Minutes	6		45		
Lat Second	ls		24.5881		
Long Degre	e		73		
Long Minut	es		14		
Long Seco	nds		36.2520		
Location De	eterminati	onMethod	screen digitized		
Well Type					
Depth To L	iner Top		0.00		
Hydro Frac	tured		0		
Hydro Frac Flow	tured Res	ulting	0.00		
Well Location Submitted As A Dot On A Map			Ν		
Starting Depth	Ending Depth	Water Bearing	Lithology Code	Lithology Description	
0.00	20.00		G	gravel	
20.00	300.00		R	black slate	
300.00	500.00		R	blue granite	

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

 www.VermontDrinkingWater.org

 VT DEC = Water Supply Division = 103 South Main Street, Old Pantry Building = Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 = Fax: 802-241-3284

 DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home

 State of Vermont Agencies & Depts.
 • Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State Librarian a ?

 A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

Water Supply Division

-		dec home 🔰 dec calenda	ar 🔰 contact d	ec topic index	sitemap search
Water Supply	Division				VT DEC
wsd home regulation	ns permits grants/loans	publications of	calendar	contacts	
7	·				dec home > wsd home
Critical Infrastructure	Well Details				
Protection Information > Permit, Certification & License Application Forms & Information > Water System Capacity Development & DWSRF > Well Driller & Well	Date Completed Date Received Driller Well Report Number Tag	03/01/1991 03/18/1991 101 Thomas Hanson 288 2-022891	n Hanson Well [Drilling & Pump Co Inc	Quick Links » List of Vermont Licensed Well Drillers » Well Driller Licensing Rule PDF » Well Driller License
Location Program	Comments	Davinal			<u>forms</u>
Water System Operators	Nap Cell	Pownai 19B3			
 Drinking Water Quality The TNC Handbook 	Tax Map E911 Address				Current Nationwide Threat Level: Yellow
> Rules and Regulations	Subdivision				
Staff Directory	Owners First Name	Pamela			
> News	Owners Last Name	Lyttle			
 Other Links of Interest Agency of Natural Resources GIS Internet 	Purchaser First Name Purchaser Last Name Well Use	Domestic			
Mapping	Well Reason	New Supply			
	Drilling Method	Rotary (AP)			
	Well Depth Yield Gallons Per Minute	482.00 feet 4 00			
	Yield Test Tested For Hours	0.00			
	Static Water Level	100.00 feet			
	Over Flowing	0 120 fast			
	Casing Length	130 leet 140.00 feet			
	Casing Diameter	6.00 inches			
	Casing Length Below Land Surface	0.00 feet			
	Casing Length Exposed	0.00			
	Casing Weight	0.00 lbs/foot			
	Casing Finish	Above ground, finish	ed		
	Liner Length	0.00 feet			
	Liner Diameter	0.00 inches			
	Liner Weight	0.00 lbs/foot			
	Grout Type				
	Seal Type	0.00 is sheet			
	Diameter Drilled in Bedrock	0.00 inches			
	Screen Make Type	0.001001			
	Screen Material				
	Screen Length	0.00 feet			
	Screen Diameter Screen Slot Size	0.000 inches			
	Depth of Screen	0.00 feet			
	Gravel Size Type				
	Casing Sealing Method	Shoe & grout bottom	l		
	Well Development	Compressed an			
	Not Steel Casing	0			
	Water Analysis	0			
	Well Screen AW Partial	0			
	Unique GIS Name	PQ288			
	Lat Degree	42			
	Lat Minutes	45			
	Lat Seconds Long Degree	73			
	Long Minutes	13			
	Long Seconds	40.2660			
	Location DeterminationMethod	screen digitized			
	Depth To Liner Top	0.00			
	Hydro Fractured	0			
	Hydro Fractured Resulting Flow	0.00			

	~
4	ð

Well Location Submitted As A Dot On A Map N	

WellMainRecordNumber	StartingDepth	EndingDepth Wa	aterBearing LithologyCo	de LithologyDescription
46144	0.00	60.00	GS	sand and gravel
46144	60.00	130.00	С	hardpan and clay
46144	130.00	482.00	R	gray shale and limestone

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

www.VermontDrinkingWater.org VT DEC = Water Supply Division = 103 South Main Street, Old Pantry Building = Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 = Fax: 802-241-3284

DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home

State of Vermont Agencies & Depts. • Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State Librarian a ? A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

VERMONT.gov

_	dec home 🎽 dec ca	alendar 🚺 contac	t dec 🤺 topic index 🎽	sitemap	search	
Water Supply	y Division				VT DEC	
wsd home regulation	ons permits	grants/loans	publications	calendar	contacts	
	6					
				de	<u>c home</u> > wsd home	
Critical Infrastructure		etalis				
Protection Information	Date Completed		05/04/1992	Qu	ick Links	
License Application Forms	s Date Received		06/16/1992	» List of	Vermont	
& Information	Driller		23 Clyde (Jack) Frost	> Licens	Sed Well Drillers Driller Licensing	
Development & DWSRF	Wall Depart Num	abor	Frost Inc	Rule	PDF	
Well Driller & Well		IDEI	309 7-382	» <u>Well [</u>	Driller License	
Source Water Protection	Comments		7-302			
Water System Operators	Town		Pownal			
	Map Cell		19B3	» <u>Curre</u>	nt Nationwide	
Drinking water Quality	Tax Map			Threa	t Level: Yellow	
The TNC Handbook	E911 Address					
Rules and Regulations	SubDivision					
Staff Directory	Lot Number					
News	Owners First Na	me	Mathew			
Other Links of Interest	Owners Last Na	me	Dodge			
Agency of Natural	Purchaser First	Purchaser First Name				
Resources GIS Internet	Purchaser Last	Purchaser Last Name		-		
wapping	Well Use		Domestic			
	Well Reason		New Supply			
	Wall Dopth		Rotary (AP)			
	Vield Callons Pe	r Minute	0.50			
	Vield Test Teste	d For Hours	0.00			
	Static Water Lev	el	200 00 feet			
	Over Flowing		0			
	OverBurden Thio	ckness	30 feet			
	Casing Length		50.00 feet			
	Casing Diameter	r	6.00 inches			
	Casing Length B Surface	elow Land	0.00 feet			
	Casing Length E	xposed	0.00			
	Casing Material					
	Casing Weight		0.00 lbs/foot			
	Casing Finish		Above ground, finished	1		
	Liner Length		0.00 feet			
	Liner Diameter		0.00 inches			
	Liner Material		0.00 11 - 16 - 1			
			U.UU IDS/TOOT			
	Seal Type					
	Diameter Drilled	In Bedrock	0.00 inches			
	Denth Drilled in I	Redrock				
	Screen Make Tv	ne				
	Screen Material	F~				

Screen Lei	ngth			0.00 fee	t	
Screen Diameter				0.00 inches		
Screen Slot Size				0.000 in	ches	
Depth of S	creen			0.00 fee	t	
Gravel Size	е Туре					
Casing Sea	aling Meth	od		Drive sh	ioe only	
Yield Test	Method			Compre	ssed air	
Well Devel	opment					
Not Steel C	Casing			0		
Water Ana	lysis			0		
Well Scree	n			0		
AW Partial				0		
Unique GI	S Name			PQ309		
Lat Degree)			42		
Lat Minute	s			45		
Lat Second	ds			16.8720		
Long Degr	ee			73		
Long Minu	tes			14		
Long Seco	nds			44.5740	1	
Location D	eterminati	onMethod		screen digitized		
Well Type						
Depth To L	iner Top			0.00		
Hydro Frac	ctured			0		
Hydro Frac	ctured Res	ulting Flow	/	0.00		
Well Locat On A Map	ion Submi	tted As A E	Dot	Ν		
Starting Depth	Ending Depth	Water Bearing	Lit	hology Code	Lithology Description	
0.00	30.00			GH	Brown gravel & clay	
30.00	50.00			R	Black shale	
50.00	500.00			R	Black shale - water	

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

_	deo	c home 🔰 dec calendar	r co	ontact dec	topic index	siter	map	search
Water Su	upply D	Division						VT DEC
wsd home	regulations	permits g	rants/l	oans	publications	calend	lar	contacts
	6							
							<u>de</u>	<u>c home</u> > wsd home
Critical Infrastru	cture	Well Deta	ils					
Protection Inform	mation	Date Completed		07/29/19	992		Qu	ick Links
Permit, Certifica License Applica	tion & tion Forms	Date Received		08/10/1	992	»	List of	Vermont
& Information		2 410 110001104		101 Thc	omas Hanson		Licens	sed Well Drillers
Water System C	apacity	Driller		Hanson	Well Drilling &	»	Well D	Driller Licensing
Well Driller & We	ell m	Well Report Number		Pump C 313	o Inc	»	Well E	Driller License
Source Water Pr	otection	Тад		101-2-7	2992		1011113	
Water System O	perators	Comments						
		Town		Pownal		»	<u>Curre</u>	nt Nationwide
Jurinking water (auality	Map Cell		19B3			<u>Threa</u>	t Level: Yellow
The TNC Handbo	ook	Тах Мар						
Rules and Regulation	lations	E911 Address						
Staff Directory		SubDivision						
News		Lot Number						
Other Links of Ir	nterest	Owners First Name		Michael				
Agency of Natur	al	Owners Last Name		McKenr	a			
Resources GIS I	nternet	Purchaser First Name						
wapping				Domest	ic			
		Well Reason		Replace	existing supply			
		Drilling Method		Rotary (
		Well Depth		222.00	ieet			
		Yield Gallons Per Minu	te	20.00				
		Yield Test Tested For H	Hours	0.00				
		Static Water Level		40.00 fe	et			
		Over Flowing		0				
		OverBurden Thickness		10 feet				
		Casing Length		22.00 fe	et			
		Casing Diameter		6.00 inc	hes			
		Casing Length Below L Surface	and	0.00 fee	t			
		Casing Length Expose	d	0.00				
		Casing Weight		0.00 lbs	/foot			
		Casing Finish		Above o	round, finished			
		Liner Length		0.00 fee	, <u>, , , , , , , , , , , , , , , , , , </u>			
		Liner Diameter		0.00 inc	hes			
		Liner Material		-				
		Liner Weight		0.00 lbs	/foot			
		Grout Type						
		Seal Type						
		Diameter Drilled In Bec	lrock	0.00 inc	hes			
		Depth Drilled in Bedroo	k	0.00 fee	t			
		Screen Make Type						

http://www.vermontdrinkingwater.org/cfm/WellReportviewDetails.cfm?id=236639

Screen Ma	aterial						
Screen Le	ength		0.00 feet				
Screen Di	ameter		0.00 inche	S			
Screen Sl	ot Size		0.000 inch	es			
Depth of S	Screen		0.00 feet				
Gravel Siz	е Туре						
Casing Se	ealing Met	hod	Shoe & gro	out entire			
Yield Test	Method		Compress	ed air			
Well Deve	lopment						
Not Steel	Casing		0				
Water Ana	alysis		0				
Well Scre	en		0				
AW Partia	l		0				
Unique Gl	S Name		PQ313				
Lat Degre	е		42				
Lat Minute	es		45				
Lat Secon	ds		37.3979				
Long Deg	ree		73				
Long Minu	utes		13				
Long Seco	onds		16.5540				
Location Determina	ationMethe	bc	screen digitized				
Well Type							
Depth To	Liner Top		0.00				
Hydro Fra	ctured		0				
Hydro Fra Flow	ctured Re	esulting	0.00				
Well Loca Dot On A	tion Subr Map	nitted As A	Ň				
Starting Depth	Ending Depth	Water Bearing	Lithology Code	Lithology Description			
0.00	10.00	5	н	Hardpan			
10.00	222.00		R	Gray & Black shale with seams of quartz, H2O			

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

dec home

dec calendar

contact dec

topic index

53

Water Supply Division wsd home regulations permits grants/loans publications calendar 1 Well Details Critical Infrastructure **Protection Information Quick Links Date Completed** 06/27/1994 Permit, Certification & » List of Vermont Date Received 07/11/1994 License Application Forms Licensed Well Drillers & Information 16 H Allen Follett A & W Driller >> Well Driller Licensing Water System Capacity Artesian Well Co Inc Rule PDF **Development & DWSRF** Well Report Number 363 Well Driller & Well >> Well Driller License 1625160 **Location Program** Tag <u>forms</u> **Source Water Protection** Comments Town Pownal Water System Operators >> Current Nationwide 19B3 Map Cell Drinking Water Quality Threat Level: Yellow Tax Map The TNC Handbook E911 Address Rules and Regulations SubDivision Staff Directory Lot Number **Owners First Name** Suzanne News **Owners Last Name** Caraman Other Links of Interest Purchaser First Name Agency of Natural Purchaser Last Name **Resources GIS Internet** Mapping Well Use Domestic Well Reason Replace existing supply **Drilling Method** Rotary (AP) Well Depth 500.00 feet Yield Gallons Per Minute 0.00 Yield Test Tested For Hours 0.00 Static Water Level 100.00 feet **Over Flowing** ٥ 16 feet **OverBurden Thickness** 40.00 feet Casing Length 6.00 inches **Casing Diameter** Casing Length Below Land 0.00 feet Surface Casing Length Exposed 0.00 **Casing Material** Casing Weight 0.00 lbs/foot **Casing Finish** Above ground, finished Liner Length 0.00 feet Liner Diameter 0.00 inches Liner Material Liner Weight 0.00 lbs/foot Grout Type Seal Type **Diameter Drilled In Bedrock** 0.00 inches 0.00 feet Depth Drilled in Bedrock Screen Make Type

Screen Material

Screen Le	ngth		0.00 feet		
Screen Dia	ameter		0.00 inches	6	
Screen Slo	ot Size		0.000 inche	es	
Depth of S	creen		0.00 feet		
Gravel Siz	е Туре				
Casing Se	aling Meth	od	Drive shoe	only	
Yield Test	Method		Compresse	ed air	
Well Deve	lopment				
Not Steel	Casing		0		
Water Ana	lysis		0		
Well Scree	en		0		
AW Partia	l		0		
Unique GI	S Name		PQ363		
Lat Degree	Э		42		
Lat Minute	S		45		
Lat Secon	ds		41.5260		
Long Degr	ee		73		
Long Minu	tes		14		
Long Seco	onds		25.5120		
Location D	eterminati	onMethod	screen digi	tized	
Well Type					
Depth To I	_iner Top		0.00		
Hydro Fra	ctured		0		
Hydro Fra Flow	ctured Res	sulting	0.00		
Well Location Submitted As A Dot On A Map			Ν		
Starting Depth	Ending Depth	Water Bearing	Lithology Code	Lithology Description	
0.00	16.00	-	CS	clay sand	
16.00	500.00		R	Bedrock (gray black shale)	

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

VERMONT.gov

-	dec	c home 🔰 dec calendar	conta	ict dec 🍈	topic index	sitemap	search
Water S	upply [Division					VT DEC
wsd home	regulations	permits gr	rants/loan	is pu	blications	calendar	contacts
	6					- I -	- h
			• 1 -			de	<u>c home</u> > wsd home
Critical Infrastr	ucture	vveli Deta	IIS				
Protection Info	rmation	Date Completed	0	1/20/1996	3	Qu	ick Links
License Applic	ation &	Date Received	0	3/04/1996	6	» List of	Vermont
& Information	•	Driller	9	3 Clarenc	e Gould Sr.	Licens	ed Well Drillers
Development 8	Capacity & DWSRF		Ģ	Sould & So	ons Well Drilling	Rule F	² DF
Well Driller & V	Vell	Well Report Number	4	-05		» Well D	riller License
Location Progr	am	Tag	5	679		torms	
Source water i	Protection	Comments		Downol			
Water System	Operators	Nap Coll	г 2			» Currei	nt Nationwide
Drinking Water	Quality	Tax Man	2	.041		Threa	Level: Yellow
The TNC Hand	book	E911 Address					
> Rules and Reg	ulations	SubDivision					
Staff Directory		Lot Number					
News		Owners First Name	F	RALPH			
Other Links of	Interest	Owners Last Name	V	VEST			
Agency of Nati	ural	Purchaser First Name					
Resources GIS	Internet	Purchaser Last Name					
Mapping		Well Use Domestic					
		Well Reason	Ν	lew Suppl	У		
		Drilling Method	F	Rotary (AF	')		
		Well Depth	6	625.00 fee	t		
		Yield Gallons Per Minut	e 5	0.00			
		Static Water Laval	iours u	6.00 feet			
		Over Elewing	1	6.00 leet			
		OverBurden Thickness	1	, N9 feet			
		Casing Length	1	20 00 fee	t		
		Casing Diameter	6	.00 inche	S		
		Casing Length Below La Surface	and 0	0.00 feet			
		Casing Length Exposed	I 0	0.00			
		Casing Material					
		Casing Weight	0	0.00 lbs/fo	ot		
		Casing Finish	А	bove grou	und, finished		
		Liner Length	0	0.00 feet			
		Liner Diameter	0	0.00 inche	S		
		Liner Material					
		Liner Weight	0	0.00 lbs/fo	ot		
		Grout Type					
		Seal Type			_		
		Diameter Drilled In Bedi	госк 0		5		
		Screen Make Type	k U	JUU IEEL			

Screen Material

Screen Le	ength		0.00 feet				
Screen Di	ameter		0.00 inch	es			
Screen Sl	ot Size		0.000 inc	hes			
Depth of S	Screen		0.00 feet				
Gravel Siz	е Туре						
Casing Se	aling Met	hod	Drive sho	e only			
Yield Test	Method		Compres	sed air			
Well Deve	lopment						
Not Steel	Casing		0				
Water Ana	alysis		0				
Well Scree	en		0				
AW Partia	I		0				
Unique GI	S Name		PQ405				
Lat Degre	е		42				
Lat Minute	es		44				
Lat Secon	ds		51.9539				
Long Deg	ree		73				
Long Minu	utes		14				
Long Seco	onds		15.6360	15.6360			
Location D	Determina	tionMetho	d screen digitized				
Well Type							
Depth To	Liner Top		0.00				
Hydro Fra	ctured		0				
Hydro Fra Flow	ctured Re	sulting	0.00				
Well Loca Dot On A	tion Subrr Map	nitted As A	Ν				
Starting Depth	Ending Depth	Water Bearing	Lithology Code	Lithology Description			
0.00	7.00		G	GRAVEL			
8.00	108.00		0	HARDPAN & ROCKS			
109.00	625.00		R	MOSTLY BLACK SLATE SPOTS OF GREEN			

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

-	de	c home 🦷 dec calenda	r conta	ict dec	topic index	sitemap	search
Water S	upply [Division					VT DEC
wsd home	regulations	permits g	grants/loar	ns p	ublications	calendar	contacts
	6					ala	
			:1-			de	<u>c nome</u> > wsa nome
Critical Infrastr	ucture	vveli Deta	alis				
Protection Info	rmation	Date Completed		11/13/19	97	Qu	ick Links
License Applic	ation Forms	Date Received		12/22/19	97	» List of	Vermont
& Information	Canacity	Driller		16 H Alle	n Follett A & W	Well [<u>Sed Well Drillers</u> Driller Licensing
Development &	DWSRF	Wall Papart Number		Artesian	Well Co Inc	Rule	PDF
Well Driller & W	Vell			27760		» <u>Well [</u>	Driller License
Source Water F	Protection	Comments		surged w	ell - made 2 anm		
Weter System (Town		Pownal	en - made z gpm		
a water System (Operators	Man Cell		20A1		» Curre	nt Nationwide
Drinking Water	Quality	Tax Map	·			Threa	t Level: Yellow
The TNC Hand	book	E911 Address					
Rules and Regimentation	ulations	SubDivision					
Staff Directory		Lot Number					
News		Owners First Name		George			
Other Links of	Interest	Owners Last Name		Tedeschi	i		
Agency of Natu	ıral	Purchaser First Name					
Resources GIS	Internet	Purchaser Last Name					
марріпу		Well Use		Domestic			
		Well Reason		Replace	existing supply		
		Drilling Method		Rotary (A	AP)		
		Vield Collopa Der Minu	ito	000.00 IE	el		
		Vield Test Tested For	Houre	0.15			
		Static Water Level	liouis	0.00 400 00 fc	ot		
		Over Flowing		400.00 ie 0			
		OverBurden Thickness	3	5 feet			
		Casing Length	-	40.00 fee	et		
		Casing Diameter		6.00 inch	es		
		Casing Length Below I Surface	_and	38.00 fee	ət		
		Casing Length Expose	d	0.00			
		Casing Material		Steel			
		Casing Weight		17.00 lbs	/foot		
		Casing Finish		Above gr	ound, finished		
		Liner Length		0.00 feet			
		Liner Diameter		0.00 inch	ies		
		Liner Material					
		Liner Weight		0.00 lbs/1	foot		
		Grout Type					
		Seal Type	-ll	0 00 · ·			
		Diameter Drilled In Bed	arock	0.00 inch	ies		
		Seroon Make Tune	υĸ	u.uu reet			
		Scieen wake Type					

Screen Material

Screen Lei	ngth		0.00 feet			
Screen Dia	ameter		0.00 inches			
Screen Slo	ot Size		0.000 inche	S		
Depth of S	creen		0.00 feet			
Gravel Size	е Туре					
Casing Sea	aling Methe	bc	Drive shoe of	only		
Yield Test	Method		Compresse	d air		
Well Devel	opment		Other			
Not Steel C	Casing		0			
Water Ana	lysis		0			
Well Scree	n		0			
AW Partial			0			
Unique GIS	S Name		PQ5101			
Lat Degree	9		42			
Lat Minute	inutes 44					
Lat Second	ds		52.2059	52.2059		
Long Degr	ee		73			
Long Minu	tes		14			
Long Seco	nds		25.9440			
Location D	eterminatio	onMethod	screen digiti	zed		
Well Type						
Depth To L	iner Top		0.00			
Hydro Frac	ctured		0			
Hydro Frac Flow	ctured Res	ulting	0.00			
Well Locat Dot On A M	ion Submit ⁄Iap	ted As A	Ν			
Starting	Ending	Water	Lithology	Lithology		
Depth	Depth	Bearing	Code	Description		
0.00	5.00		S	sand		
5.00	600.00		R	blue/black shale		

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

VERMONT.gov

	dec home 🎽 dec cale	ndar Contact	dec 🔰 topic index 🎽	sitemap	search
Water Suppl	y Division				VT DEC
wsd home regulat	tions permits	grants/loans	publications	calendar	contacts
	8				
		(a!la		de	<u>c home</u> > wsd home
Critical Infrastructure		talis			
Protection Information Permit, Certification &	Date Completed		08/18/1998	Qu	ick Links
License Application Forn	ns Date Received		09/04/1998	» List of	Vermont
& Information Water System Capacity	Driller		23 Clyde (Jack) Frost	» Well [Driller Licensing
Development & DWSRF	Well Report Numbe	٥r	6783	Rule	PDF
Well Driller & Well Location Program	Tag		7-1019	// Vell L	Driller License
Source Water Protection	Comments			101110	
Water System Operators	Town		Pownal		
Drinking Water Quality	Map Cell		20A1	» <u>Curre</u>	nt Nationwide
The TNC Handback	Тах Мар			Inrea	t Level: Yellow
	E911 Address				
A Rules and Regulations	SubDivision				
Staff Directory	Lot Number				
News	Owners First Name	•	John		
Other Links of Interest	Owners Last Name		Bottessi		
Agency of Natural	Purchaser Last Na	ne			
Mapping	Well Use	ne	Domestic		
	Well Reason		Replace existing supply		
	Drilling Method		Rotary (AP)		
	Well Depth		500.00 feet		
	Yield Gallons Per N	linute	0.75		
	Yield Test Tested F	or Hours	0.00		
	Static Water Level		300.00 feet		
	Over Flowing		U OQ foot		
		less	90 leel 100 00 feet		
	Casing Diameter		6 00 inches		
	Casing Length Belo Surface	w Land	98.00 feet		
	Casing Length Exp	osed	0.00		
	Casing Material		Steel		
	Casing Weight		17.00 lbs/foot		
	Casing Finish		Above ground, finished	l	
	Liner Length		0.00 feet		
	Liner Diameter		U.UU INCRES		
	Liner Weight		0.00 lbs/foot		
	Grout Type				
	Seal Type				
	Diameter Drilled In	Bedrock	0.00 inches		
	Depth Drilled in Be	drock	0.00 feet		
	Screen Make Type				

Screen Ma	terial						
Screen Ler	ngth			0.00 feet	t		
Screen Dia	meter			0.00 inches			
Screen Slo	t Size			0.000 inches			
Depth of Se	creen			0.00 feet	t		
Gravel Size	е Туре						
Casing Sea	aling Meth	od		Drive sh	oe only		
Yield Test	Method			Compres	ssed air		
Well Devel	opment						
Not Steel C	Casing			0			
Water Anal	ysis			0			
Well Scree	n			0			
AW Partial				0			
Unique GIS	S Name			PQ6783			
Lat Degree				42			
Lat Minutes	5			44			
Lat Second	ls			50.5140			
Long Degre	ee			73			
Long Minut	es			14			
Long Seco	nds			0.8160			
Location D	eterminatio	onMethod		screen digitized			
Well Type							
Depth To L	iner Top			0.00			
Hydro Frac	tured			0			
Hydro Frac	tured Res	ulting Flow		0.00			
Well Locati On A Map	on Submit	ted As A D	ot	N			
Starting	Ending	Water	Lit	hology	Lithology		
Depth	Depth	Bearing		Code	Description		
0.00	20.00			G	tine gravel		
20.00	90.00			С	clay		
90.00	100.00			R	black shale		

100.00

260.00

260.00

500.00

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

R

R

black shale

black shale

.75

_	dec	home dec calendar	co	ontact dec	topic index	sitemap	search
Water Su	upply [Division					VT DEC
wsd home	regulations	permits gra	ants/le	oans	publications	calendar	contacts
	r					<u>d</u>	<u>ec home</u> > wsd home
 Critical Infrastru Protection Inforr Permit, Certifica License Applica & Information Water System C Development & I Well Driller & We Location Progra Source Water Pr Water System O Drinking Water O The TNC Handbe Rules and Regul Staff Directory News Other Links of Ir Agency of Natur Resources GIS I Mapping 	cture mation tion & tion Forms apacity DWSRF ell m rotection perators Quality took lations hterest al nternet	Well Report Number Tag Comments Town Map Cell Tax Map E911 Address SubDivision Lot Number Owners First Name Owners Last Name Purchaser First Name Purchaser First Name Purchaser Last Name Well Use Well Reason Drilling Method Well Depth Yield Gallons Per Minuter Yield Gallons Per Minuter Yield Test Tested For Ho Static Water Level Over Flowing OverBurden Thickness Casing Length Easing Length Below La Surface Casing Length Below La Surface Casing Length Exposed Casing Material Casing Material Casing Material Liner Diameter Liner Material Liner Weight Grout Type Seal Type Diameter Drilled In Bedra	IS ours and	05/29/20 07/17/20 93 Clare Gould & 24722 142' 4 gi 10 320 1 Pownal 183 Oak Robert Galiese Domesti New Suj 320.00 f 10.00 1.00 5.00 fee 0 10 feet 42.00 fe 6.00 incl 40.00 fe 0.00 lbs/ 0.00 lbs/ 0.00 incl	003 003 ence Gould Sr. Sons Well Drilling pm 168' 6 gpm 249 0 a Drive c pply eet t t et hes et s/foot t hes	Q » List of Licer » Well Rule » Well form » Curre Thre	ec home > wsd home
		Depth Drilled in Bedrock Screen Make Type		U.UU fee	τ		

Screen Ma	aterial						
Screen Le	ngth		0.00 feet				
Screen Dia	ameter		0.00 inches				
Screen Slo	ot Size		0.000 inches				
Depth of S	Screen		0.00 feet				
Gravel Siz	е Туре						
Casing Se	aling Meth	od	Drive shoe or	nly			
Yield Test	Method						
Well Deve	lopment						
Not Steel	Casing		0				
Water Ana	lysis		0				
Well Scree	en		0				
AW Partia	l		0				
Unique Gl	S Name		PQ24722				
Lat Degree	e		42				
Lat Minute	S		45				
Lat Secon	ds		41.9039				
Long Degr	ee		73				
Long Minu	ites		13				
Long Seco	onds		42.7080				
Location Determina	tionMetho	d	Welldriller/Cla	arion			
Well Type			Bedrock				
Depth To I	Liner Top		0.00				
Hydro Fra	ctured		0				
Hydro Fra Flow	ctured Res	sulting	0.00				
Well Locat Dot On A I	tion Submi Map	tted As A					
Starting	Ending	Water	Lithology	Lithology			
Depth	Depth	Bearing	Code	Description			
0.00	6.00		D	sandy loam			
6.00	10.00		н	hardpan			
10.00	320.00		R	black/gray slate/shale rock			

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

Water Supply Division wsd home regulations permits grants/loans publications 1 <u>dec home</u> > wsd home Well Details Critical Infrastructure **Protection Information Quick Links Date Completed** 08/03/2004 Permit, Certification & » List of Vermont Date Received 08/24/2004 License Application Forms Licensed Well Drillers & Information 23 Clyde (Jack) Frost Driller >> Well Driller Licensing Water System Capacity Frost Inc Rule PDF **Development & DWSRF** Well Report Number 27757 Well Driller & Well >> Well Driller License 27757 **Location Program** Tag <u>forms</u> **Source Water Protection** Comments pump setting - 140' Town Pownal Water System Operators >> Current Nationwide Map Cell Drinking Water Quality Threat Level: Yellow Tax Map The TNC Handbook E911 Address 7275 Route 7 Rules and Regulations SubDivision Staff Directory Lot Number **Owners First Name** Joe News **Owners Last Name** Tornabene Other Links of Interest Purchaser First Name Agency of Natural Purchaser Last Name **Resources GIS Internet** Mapping Well Use OTHER Well Reason Replace existing supply Drilling Method Well Depth 280.00 feet Yield Gallons Per Minute 40.00 Yield Test Tested For Hours 1.00 Static Water Level 15.00 feet **Over Flowing** 0 **OverBurden Thickness** 39 feet 50.00 feet Casing Length **Casing Diameter** 6.00 inches Casing Length Below Land 48.50 feet Surface Casing Length Exposed 1.50 **Casing Material** Steel Casing Weight 19.00 lbs/foot **Casing Finish** Liner Length 0.00 feet Liner Diameter 0.00 inches Liner Material Liner Weight 0.00 lbs/foot Grout Type Clay/Seal Bentonite Seal Type

dec calendar

contact dec

dec home

0.00 inches 0.00 feet

Diameter Drilled In Bedrock

Depth Drilled in Bedrock Screen Make Type Screen Material

Screen Le	ngth		0.00 feet				
Screen Dia	ameter		0.00 inch	0.00 inches			
Screen Slo	ot Size		0.000 inc	0.000 inches			
Depth of S	creen		0.00 feet				
Gravel Siz	е Туре						
Casing Se	aling Meth	od	Shoe & g	rout bottom			
Yield Test	Method						
Well Deve	lopment						
Not Steel	Casing		0				
Water Ana	llysis		0				
Well Scree	en		0				
AW Partia			0				
Unique GI	S Name		PQ27757	7			
Lat Degree	e		42				
Lat Minute	S		45	45			
Lat Secon	ds		15.9121	15.9121			
Long Degr	ee		73	73			
Long Minu	tes		13	13			
Long Seco	onds		6.9960				
Location D	eterminati	onMethod	Welldrille	er/Clarion			
Well Type			bedrock				
Depth To I	_iner Top		0.00				
Hydro Fra	ctured		0				
Hydro Fra	ctured Res	ulting Flow	0.00				
Well Locat On A Map	ion Submi	tted As A D	ot				
Starting Depth	Ending Depth	Water Bearing	Lithology Code	Lithology Description			
0.00	39.00	•	ST	till, sand, rocks			
39.00	50.00		R	black, gray shale			
50.00	105.00		R	black, gray shale			
105.00	280.00		R	gray shale			
280.00	0.00			fractures - 105/160/250			

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

State of Vermont Agencies & Depts. • Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State

http://www.vermontdrinkingwater.org/cfm/WellReportviewDetails.cfm?id=285408

_	dec	: home 🔰 dec calendar	co	ntact dec	topic index	site	map	search
Water S	upply [Division						VT DEC
wsd home	regulations	permits gr	ants/lo	oans	publications	calen	dar	contacts
	6						do	c homo > wed homo
Water Si wsd home Critical Infrastru Protection Infor Permit, Certifica License Applica & Information Water System C Development & Well Driller & W Location Progra Source Water P Water System C Orinking Water Water System C Drinking Water The TNC Handb Rules and Regu Staff Directory News Other Links of It Agency of Natur Resources GIS Mapping	upply C regulations regulations control control control contection	permits gr VVEII Detal Date Completed Date Completed Date Received Driller Well Report Number Tag Comments Town Map Cell Tax Map E911 Address SubDivision Lot Number Owners First Name Owners Last Name Purchaser First Name Purchaser Last Name Purchaser Last Name Well Use Well Reason Drilling Method Well Depth Yield Gallons Per Minute Yield Test Tested For H Static Water Level Over Flowing OverBurden Thickness Casing Length Below Lasser Casing Length Below Lasser Surface Casing Length Exposed Casing Material	e lours	11/21/20 01/28/20 101 Tho Hanson Pump C 33815 Casing r Pownal B Hill Ro Jordan Schell-L Domesti New Su 702.00 f 1.00 4.00 140.00 f 0 39 feet 50.00 fe 6.00 inc 48.00 fe 2.00	publications	calen	dar <u>Q</u> u <u>List of</u> <u>Licen</u> <u>Well I</u> <u>Rule 1</u> <u>Well I</u> forms	vr DEC contacts contacts c home > wsd home ick Links Vermont sed Well Drillers Driller Licensing PDF Driller License nt Nationwide t Level: Yellow
		Casing Weight		19.00 lb	s/foot			
		Liner Length		0.00 fee	t			
		Liner Diameter		0.00 inc	hes			
		Liner Material			/foot			
		Grout Type		Clav/Se	al Bentonite			
		Seal Type		2.29/00				
		Diameter Drilled In Bedr	rock	0.00 inc	hes			
		Depth Drilled in Bedrock Screen Make Type	<	0.00 fee	t			

Screen Ma	iterial						
Screen Le	ngth		0.00 feet				
Screen Dia	ameter		0.00 inches				
Screen Slo	ot Size		0.000 inches				
Depth of S	creen		0.00 feet				
Gravel Siz	е Туре						
Casing Se	aling Meth	od	Drive shoe on	ly			
Yield Test	Method						
Well Devel	opment						
Not Steel 0	Casing		0				
Water Ana	lysis		0				
Well Scree	en		0				
AW Partial			0				
Unique GI	S Name		PQ33815				
Lat Degree			42				
Lat Minute	s		45				
Lat Second	ds		30.3000				
Long Degr	ee		73				
Long Minu	tes		13				
Long Seco	onds		42.3600				
Location Determina	tionMetho	d					
Well Type			Bedrock				
Depth To L	iner Top		0.00				
Hydro Frad	ctured		0				
Hydro Frac Flow	ctured Res	ulting	0.00				
Well Locat Dot On A M	ion Submi ⁄Iap	tted As A	Y				
Starting Depth	Ending Depth	Water Bearing	Lithology Code	Lithology Description			
0.00	39.00		С	brown clay			
39.00	702.00		R	black shale			

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

-	dec h	ome 🔰 dec calend	dar 🚺 conta	ct dec 🍈	topic index	sitemap	search
Water Supp	oly Di	vision					VT DEC
wsd home regu	lations	permits	grants/loan	s p	ublications	calendar	contacts
	r.					de	<u>c home</u> > wsd home
 Critical Infrastructure Protection Information Permit, Certification & License Application Fo & Information Water System Capacity Development & DWSR Well Driller & Well Location Program Source Water Protection Water System Operator Drinking Water Quality The TNC Handbook Rules and Regulations Staff Directory News Other Links of Interest Agency of Natural Resources GIS Internet Mapping 	orms C y F on C y F on C y F y F y T on C y T y F y T y T y T y T y T y T y T y T y T y T	Aveil Det Date Completed Date Received Driller Vell Report Number Tag Comments Town Map Cell Tax Map 2911 Address SubDivision ot Number Dwners First Name Dwners Last Name Dwners Last Name Dwners Last Name Durchaser First Name Durchaser Last Name	ails e e e or Hours ess v Land sed	12/06/2 12/07/2 212 Da Water V 41372 41372 Powna 1503 N Road Jon D. Peaslea Domess Replac 125.00 8.00 2.00 40.00 fe 6.00 in 86.00 fe 6.00 in 86.00 fe 0.00 fe 0.00 fe 0.00 fe	2007 vid Parker Parker Vell orth West Hill e tic e existing supply feet eet ches eet cos/foot et ches s/foot	Qu » List of Licens » Well E Rule F » Well E forms » <u>Curre</u> Threa	<u>vick Links</u> <u>Vermont</u> sed Well Drillers <u>Driller Licensing</u> DF <u>Driller License</u> <u>nt Nationwide</u> <u>t Level: Yellow</u>
	S	Screen Make Type	IUCK	0.00 10	σι		

Screen Ma	aterial							
Screen Le	ngth	0.00 fee	0.00 feet					
Screen Dia	ameter	0.00 incl	0.00 inches					
Screen Slo	ot Size	0.000 in	0.000 inches					
Depth of S	creen		0.00 fee	t				
Gravel Siz	е Туре							
Casing Se	aling Meth	Drive sh	Drive shoe only					
Yield Test	Method							
Well Devel	lopment							
Not Steel 0	Casing		0					
Water Ana	lysis		0					
Well Scree	en		0					
AW Partial			0					
Unique GI	S Name		PQ4137	PQ41372				
Lat Degree	e		42	42				
Lat Minute	s	44	44					
Lat Second	ds	57.5000	57.5000					
Long Degr	ee	73	73					
Long Minu	tes		14	14				
Long Seco	onds		1.5000	1.5000				
Location D	eterminat	ionMethod						
Well Type			Bedrock	Bedrock				
Depth To L	_iner Top		0.00	0.00				
Hydro Frac	ctured	0	0					
Hydro Frac	ctured Res	v 0.00	0.00					
Well Locat On A Map	ion Submi	itted As A [Dot					
Starting	Ending	Water	Lithology	Lithology				
Depth	Depth	Bearing	Code	Description				
0.00	67.00		С					
67.00	125.00		R	black shale with quartz soft				
104.00	106.00			8 gpm				

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

http://www.vermontdrinkingwater.org/cfm/WellReportviewDetails.cfm?id=295240

	dec	: home 🔰 dec calend	ar contact	dec topic index	sitemap	search
Water Su	upply D	Division				VT DEC
wsd home	regulations	permits	grants/loans	publications	calendar	contacts
	6				de	c home > wsd home
 Critical Infrastruc Protection Inform Permit, Certificat License Applicat & Information Water System Ca Development & D Well Driller & We Location Program Source Water Program Source Water Program Water System Op Drinking Water Co The TNC Handboo Rules and Regular 	cture nation tion & tion Forms apacity DWSRF II m otection operators Quality pook ations	Well Deta Date Completed Date Received Driller Well Report Number Tag Comments Town Map Cell Tax Map E911 Address SubDivision	ails	05/01/2009 05/29/2009 23 Clyde (Jack) Frost Frost Inc 41414 41414 Pump set 480 drill 5.5 hole Pownal 91 Valley View Rd Pownal View	Qu <u>List of</u> <u>Licens</u> <u>Well D</u> <u>Rule F</u> <u>Well D</u> <u>forms</u> <u>Curren</u> <u>Threat</u>	<u>ick Links</u> Vermont ed Well Drillers viller Licensing PDF viller License
 Staff Directory News Other Links of In Agency of Natura Resources GIS In Mapping 	nterest ral Internet	SubDivision Lot Number Owners First Name Owners Last Name Purchaser First Name Purchaser Last Name Well Use Well Reason Drilling Method Well Depth Yield Gallons Per Mir Yield Gallons Per Mir Yield Test Tested For Static Water Level Over Flowing OverBurden Thicknes Casing Length Casing Length Below Casing Length Expos Casing Material Casing Weight Casing Finish	e e nute r Hours ss Land Surface sed	Pownal View Mark Atherton Domestic Deepened existing well 500.00 feet 1.25 1.00 85.00 feet 0 115 feet 0.00 feet 0.00 feet 0.00 feet 0.00 feet 0.00 feet 0.00 feet		
		Liner Length Liner Diameter Liner Material Liner Weight Grout Type Seal Type Diameter Drilled In Be Depth Drilled in Bedro Screen Make Type	edrock ock	0.00 feet 0.00 inches 0.00 lbs/foot 0.00 inches 0.00 feet		

Screen Material								
Screen Ler	igth		0.00 feet					
Screen Dia	meter			0.00 inch	es			
Screen Slo	t Size			0.000 inc	hes			
Depth of So	creen			0.00 feet				
Gravel Size	е Туре							
Casing Sea	aling Metho	bd						
Yield Test I	Method							
Well Develo	opment							
Not Steel C	asing			0				
Water Anal	ysis			0				
Well Scree	n			0				
AW Partial				0				
Unique GIS	S Name			PQ41414				
Lat Degree				42				
Lat Minutes	6			45				
Lat Second	s		28.9000					
Long Degre	e			73				
Long Minut	es		14					
Long Secor	nds		35.0000					
Location De	eterminatio	onMethod						
Well Type			Bedrock					
Depth To L	iner Top		0.00					
Hydro Frac	tured		0					
Hydro Frac	tured Resi		0.00					
Well Location Submitted As A Dot On A Map								
Starting Depth	Ending Depth	Water Bearing	Litl C	hology Code	Lithology Description			
115.00	500.00			R	Black shale med			

If you would like search for a well or wells in a specific area the following link will relocate you to the ANR GIS Internet Mapping Program. http://www.anr.state.vt.us/site/html/maps.htm

 www.VermontDrinkingWater.org

 VT DEC = Water Supply Division = 103 South Main Street, Old Pantry Building = Waterbury, VT 05671-0403 Telephone toll-free in VT: 800-823-6500 or call 802-241-3400 = Fax: 802-241-3284

 DEC home • dec calendar • contact dec • topic index • site map • search about dec • assistance • divisions & programs • dec permits • dec regulations • dec publications dec grants & loans • dec maps & GIS • hotline numbers • related links • privacy policy • ANR home

 State of Vermont Agencies & Depts.
 • Access Government 24/7 • About Vermont.Gov • Privacy Policy • Ask a State Librarian a ?

 A Vermont Government Website Copyright 2004-2006 State of Vermont - All rights reserved

Beaver Wood Energy Pownal LLC.

Inventory of Area Water Supply Wells on File With VT DEC

All Wells Within 3,000 Feet of the Existing Gravel Well at the Green Mtn Race Track, and Within its Area of Influence

VHB 10/15/2010

Well Report #	Tag	Owner, First Name	Owner, Last Name	Date Completed	Well Depth (ft)	Yield (gpm)	Static Water Level (ft)	Over Burden (ft)	Casing Length (ft)	Casing Diameter (in)	Well Use	Well Reason	Over Flowing?	Well Type	Lithology
73		[NORTHERN TERMINAL INC.	3/15/1973	245	2	20	9	20	6	Domestic		No	Bedrock	0-9: Clay; 9-245: Shale
141	12171	I	Maturski	8/15/1978	230	2	30	50	60	6	Domestic		No	Bedrock	0-50: Hardpan; 50-230: Shale
146	806102290	William	MOREY	10/22/1990	249	55		8	21	6	Domestic	New Supply	No	Bedrock	0-90: Hardpan and Clay; 90-340: rock
155	<u>ا ا</u>	BERTIL	OSCARSON	6/2/1975	115	8		10	16	6	Domestic		No	Bedrock	0-10: Soil; 10-115: Schist Ledge
156		Alta Gardens	Mobile Home Park	6/25/1975	170	15	30	60	61	6	PCWS		no	Bedrock	0-10 Gravel; 10-50 clay; 50-60 gravel; 60-170 shale, quartz, marble, granite
234		А.	Lussier	9/18/1987	305	2		62	102	6	Domestic	New Supply	No	Bedrock	0-62: Sand and Silt; 62-305: Granite
235	[]	Jon D.	Peaslee	9/16/1987	505	0.0		97	122	6	Domestic	New Supply	No	Bedrock	0-97: Sand, Silt; 97-505: Granite
270	22714	Leigh	Lopresti	4/25/1990	500	0.0	6	20	32	6	Domestic	New Supply	No	Bedrock	0-20: Gravel; 20-300: Black Slate; 300- 500: Blue Granite
288	2-022891	Pamela	Lyttle	3/1/1991	482	4	100	130	140	6	Domestic	New Supply	No	Bedrock	0-60: Sand and Gravel; 60-130: Hardpan and Clay; 130-482: Gray Shale and Limestone
309	7-382	Mathew	Dodge	5/4/1992	500	0.5	200	30	50	6	Domestic	New Supply	0	Bedrock	0-30: Brown Gravel and Clay; 30-50: Black Shale; 50-500: Black Shale- Water
313	101-2-72992	Michael	McKenna	7/29/1992	222	20	40	10	22	6	Domestic	Replace existing supply	0	Bedrock	0-10: Hardpan; 10-222: Gray & Black Shale with seams of quartz, water
363	1625160	Suzanne	Caraman	6/27/1994	500	0.0	100	16	40	6	Domestic	Replace existing supply	0	Bedrock	0-16: Clay Sand; 16-500: Bedrock (Gray Black Shale)
405	579	RALPH	WEST	1/20/1996	625	5	16	109	120	6	Domestic	New Supply	No	Bedrock	0-7: Gravel; 8-108: Hardpan and Rocks; 109-625: Mostly Black Slate, some Spots of Green
5101	37760	George	Tedeschi	11/13/1997	600	2	400	5	40	6	Domestic	Replace existing supply	No	Bedrock	0-5: Sand; 5-600: Blue/Black Shale
6783	7-1019	John	Bottessi	8/18/1998	500	0.75	300	90	100	6	Domestic	Replace existing supply	No	Bedrock	0-20: Fine Gravel; 20-90: Clay; 90-500: Black Shale
24722	24722	Robert	Galiese	5/29/2003	320	10	5	10	42	6	Domestic	New Supply	No	Bedrock	0-6: Sandy Loam; 6-10: Hardpan; 10- 320: Black/Gray Slate/Shale Rock
27757	27757	Joe	Tornabene	8/3/2004	280	40	15	39	50	6	OTHER	Replace existing supply	0	Bedrock	0-39: Till, Sand, Rocks; 39-105: Black, Gray Shale; 105-280: Gray Shale
33815	33815	Jordan	Schell-Lambert	11/21/2007	702	1	140	39	50	6	Domestic	New Supply	No	Bedrock	0-39: Brown Clay; 39-702: Black Shale
41372	41372	Jon D.	Peaslee	12/6/2007	125	8	40	67	88	6	Domestic	Replace existing supply	No	Bedrock	0-67: Clay; 67-125: Black Shale with Quartz Soft
41414	41414	Mark	Atherton	5/1/2009	500	1.25	85	115	0	0	Domestic	Deepened existing well	No	Bedrock	115-500: Black Shale med.
n					20	20	16	20	20						
Mean	<u> </u>	1	'	1	384	8.8	95	49	59						
Median	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	1	′	1	401	2.0	40	39	50	_	!	'			
Minimum	↓ /	1	′	I	115	0	5	5	0		'	'	_	_	-
Maximum	1 1	1	'	1	702	55	400	130	140						

APPENDIX 3

FEB 2 2 1995 1

February 20, 1995

Mr. James Meagher Ruanaidh Realty Corporation Yonkers and Central Avenue Yonkers, New York 10704

RE: Summary Report of the Production Well Pump Test at the Green Mountain Race Track, Pownal, Vermont (VDEC Site #93-1511)

Dear Mr. Meagher:

Lincoln Applied Geology, Inc. (LAG) is pleased to submit the summary report of the 7-day 500 gallon per minute (gpm) pump test of the production well at the Green Mountain Race Track (GMRT) in Pownal, Vermont. The pump test was conducted in response to an August 1, 1994 letter request by Richard Spiese of the Vermont Department of Environmental Conservation (VDEC) following the discovery in November 1993 of both gasoline and fuel oil contamination of shallow soils and ground water from two former leaking underground storage tanks (LUSTs).

Results of the pump test indicate that the very limited dissolved petroleum contamination in the upper aquifer associated with the former LUSTs did not migrate into either the upper aquifer monitor wells or the lower aquifer GMRT well during the 7-day pump test. It is unlikely that long-term pumping of the GMRT well will cause the low level petroleum-related contamination to flow from the upper aquifer into the lower aquifer. Additionally, it was found that the well yield of the GMRT well has increased since its drilling and construction in 1962.

If you have any questions or comments regarding this report or other concerns at the GMRT site, please feel free to call me or John Amadon, Project Manager, at 802-453-4384.

Sincerely,

William D. norland

William D. Norland Hydrogeologist

Enclosures cc: Richard Spiese

F6B 2 2 1995 2

Green Mountain Race Track

7-Day Pump Test of the Production Well

February 20, 1995

Prepared by:

William D. norland

William D. Norland Hydrogeologist

Reviewed and Approved by:

Jevel

Stephen Revell Senior Hydrogeologist

Lincoln Applied Geology. Inc. Environmental Consultants RD #1 Box 710 • Bristot, Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399

Table of Contents

,

Α.	A. Introduction					
В.	B. GMRT Production Well					
C.	Upper Aquifer Monitor Wells					
D.	Pre-T	est Monitoring and Water Quality Sampling	2			
Ε.	Cons	tant Rate Pump Test and Aquifer Coefficients	3			
F.	Grou	nd Water Travel Times	5			
G.	Induc	ed Drawdown Effects	5			
Н.	Grou	nd Water Flow	6			
I.	Wate	r Quality Results During and After the Pump Test	6			
J.	Preal	cted GMRT vvell Ground vvater Capture Zones	(
K.		IUSIONS	8			
ι.	Reco	mmendations	9			
Fig	ure 1	General Location Map				
Fig	ure 2	Detailed Site Map				
Fig	ure 3	Ground Water Contour Map for November 14, 1994				
Fig	ure 4	Ground Water Contour Map for November 18, 1994				
Fig	ure 5	Ground Water Contour Map for November 22, 1994				
Fig	ure 6	Ground Water Capture Zone for GMRT Well at 500 gpm for 7 Days				
Fig	Ground Water Capture Zone for GMRT Well at 500 gpm Steady Sta	te				
Figure 8 Ground Water Capture Zone for GMRT Well at 250 gpm Steady St						
Tab	ole 1	Ground Water Elevation and Free Product Thickness				
Tat	ole 2	Well Headspace Photoionization Results				
Tab	ole 3 👘	Summary of Ground Water Quality				
Cha	art 1	October - November 1994 Precipitation Data at Pownal 1 NE Station	1			
Cha	art 2	Drawdown vs. Time in GMRT Well				
Cha	art 3	Drawdown vs. Time in MW-2				
Cha	art 4	Drawdown in GMRT Well - Projected 187 Days				
Cha	art 5	Drawdown vs. Time in OW-8, T and S Data Lower Aquifer (5/62)				
Cha	art 6	Drawdown vs. Time in MW-2, T and S Data Upper Aquifer (11/94)				
Cha	art 7	Drawdown vs. Time in MW-3				
Cha	art 8 👘	Drawdown vs. Time in MW-4				
Cha	art 9	Distance - Drawdown, Monitor Wells in Upper Aquifer				
Арр	oendix A	GMRT Well Log and LAG Detailed Monitor Well Logs				
App	oendix B	Water Quality Laboratory Reports				
Apr	oendix C	November 1994 Pump Test Water Level and Flow Data				
Арр	oendix D	October and November 1994 Precipitation Data - Pownal 1 NE Station	on			
Арр	oendix E	May 1962 Pump Test Water Level and Flow Data				
		T				

Lincoln Applied Geology. Inc. Environmental Consultants RD # 1_Box 710 • Bristol, Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399

A. Introduction

This summary report presents the results of petroleum contamination-related pump testing and water quality sampling of the production well at the Green Mountain Race Track (GMRT). The site is located on the west side of U.S. Route 7 which is shown on the General Location Map presented as **Figure 1**. This work was conducted in response to an August 1, 1994 letter request by Richard Spiese of the Vermont Department of Environmental Conservation (VDEC) following the discovery in November 1993 of both gasoline and fuel oil contamination of shallow soils and ground water from two former leaking underground storage tanks (LUSTs). Subsequent testing confirmed low level contamination in the upper aquifer. The two former LUSTs were located 500 feet east of the production well (GMRT well). The purpose of the pump test was to evaluate whether the petroleum contaminants would migrate toward the GMRT well under pumping conditions and cause adverse water quality impacts to the well.

During the pump test the GMRT well was pumped for 7 days at a constant discharge rate of about 500 gallons per minute (gpm) while ground water levels in the GMRT well and seven nearby observation wells were monitored both manually and using continuous water level recorders. Ground water quality samples for BTEX and MTBE analyses were collected from the GMRT well and all monitor wells before and at the end of the pumping test. Ground water samples were also obtained from the GMRT well during the pumping test period. The GMRT grandstand building, race track, pond, outbuildings, GMRT well, monitor wells, former LUST locations, and nearby Hoosic River are shown on the Detailed Site Map presented as **Figure 2**.

B. GMRT Production Well

The GMRT production well is a gravel packed well that is located in a concrete block pump house as shown on **Figure 2**. The well was drilled by R.E. Chapman Co. of Oakdale, Massachusetts between May 7 and 25, 1962. It is a 24" x 18" gravel packed well with 15 feet of 120 slot well screen. The well screen is positioned within a prolific gravel aquifer that exists from a depth of 41 feet to 67 feet. Overlying the gravel aquifer is a 11 foot thick confining layer (30' - 41') of clay and silt. Unconsolidated sediments overlying the clay and silt include 'hardpan and stone' from 12 feet to 30 feet and 'topsoil and gravel' from the surface to 12 feet. The driller's well log is included in **Appendix A**. A 40 HP electric turbine pump with the intake at a depth of 57 feet presently provides water from the well to an approximately 7,600 gallon capacity storage tank (6' diameter x 36' long).

After well construction, R.E. Chapman Co. performed a four day pump test on the well between May 21 and 24, 1962. For the first three days the well was pumped at 445 gallons per minute (gpm) and then the pumping rate was increased for one day

Lincoln Applied Geology. Inc Environmental Consultants RD # 1 Box 710 • Bristol, Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399 to it's maximum rate of 520 gpm. During the last day of the test prior to pump shutdown, the maximum drawdown of the ground water level in the well was 46 feet. For comparison purposes, maximum drawdown of the ground water level in the well at the end of the recent seven day 500 gpm pump test was 29 feet. This indicates that the well yield has increased substantially due to continued water use developing the well since it's construction in 1962.

Prior to conducting the recent pump test, the original 40 HP electric motor and turbine pump had to be replaced with the spare 40 HP motor kept on-site. The original motor had 'burned out' and failed in July 1994. Following installation of the pump motor on November 11th, the 7 day pump test was performed from November 15 to 22, 1994.

C. Upper Aquifer Monitor Wells

Included in Appendix A are the Lincoln Applied Geology, Inc. (LAG) detailed well logs for one test pit well (TPW-1) installed at the former location of a 2,000 gallon gasoline UST, and the six monitor wells drilled and installed at other locations as part of the initial evaluation of the LUSTs. The locations are shown on Figure 2. All these monitor wells are screened within the upper aquifer only. Unconsolidated sediments encountered during well installation include dominantly sand and gravel, with occasional layers of silt and silty clay. In MW-5 and MW-6, a thick silty clay deposit was present from about 16 feet to the bottom of the boring. With the exception of TPW-1, monitor wells are constructed with about 5 feet of 2-inch PVC riser and 20 feet of 2-inch PVC screen with sand pack and bentonite seal as shown on the individual well logs included in Appendix A. Static ground water in the unconfined upper aquifer was present in the monitor wells at a depth of about 12 to 14 feet below grade during November 1994. The upper aquifer ground water gradient under non pumping conditions on November 14, 1994 was 0.003 feet/foot between MW-1 and MW-2 (0.84 feet water level decline over 295 feet distance). The ground water gradient after 7 days of pumping on November 22 had increased (doubled) to 0.006 feet/foot between the same wells (1.64 feet decline over 295 feet distance).

D. Pre-Test Monitoring and Water Quality Sampling

On November 14, 1994 depth to ground water measurements and headspace vapor assays by photoionization detector (PID) were collected from the seven monitor wells and the GMRT well. Ground water elevation data and PID assays are included in **Tables 1** and **2**, respectively. Water quality samples were then obtained from these wells following proper purging and sampling techniques. All samples were analyzed at the MicroAssays of Vermont laboratory for the petroleum constituents benzene, toluene, ethylbenzene, xylenes, and methyl-tert-butyl ether (BTEX and MTBE). Copies of the formal laboratory reports are presented in **Appendix B** and summarized in **Table 3**. Review of **Table 3** and **Appendix B** indicate that no quantifiable levels of

Lincoln Applied Geology. Inc. Environmental Consultants RD # 1 Box 710 • Bristol, Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399 BTEX and MTBE were detected in any of the wells except 83 parts per billion (ppb) BTEX in TPW-1. TPW-1 is located at the former location of the gasoline LUST, and the level of BTEX has declined slightly from 108 ppb on April 7, 1994. This is clear evidence that very little contaminant remains in the absolute source area.

E. Constant Rate Pump Test and Aquifer Coefficients

Continuous water level recorders were set up on the GMRT well, MW-1, MW-2, MW-3, and MW-4. Due to their great distance from the pumping well, MW-5 and MW-6 were monitored manually throughout the test. A 7 day constant rate pump test was initiated at 10:50 a.m. on November 15, 1994 and continued without interruption until 9:27 a.m. on November 22, 1994. Prior to conducting the test, static water levels were obtained in the six ground water monitor wells and the GMRT well. Water level and flow rate data collected prior to and during the pump test is included in Appendix C. Water pumped from the GMRT well was discharged through a fire hydrant and 2.5-inch diameter fire hose located near the southeast corner of the Grandstand building. A hand held hydrant pitot flow gauge was used to determine the pumping rate by measuring the water flow rate from the hose. Discharged water flowed a short distance across the paved ground surface where it entered a storm sewer catch basin and was conveyed via an underground pipe to the pond in the middle of the horse track. A target pumping rate of 500 gpm was set for the GMRT well. Pitot flow rate data yields a calculated average of 514 gpm throughout the pump test, for an estimated total pumped water discharge volume into the pond of 5.14 million gallons. On November 19th during the pump test period negligible rainfall (0.02 inches of precipitation) was recorded at the Pownal 1 NE station. The October and November 1994 precipitation data is shown on Chart 1 and the tabulated data is included as Appendix D.

The static water level in the GMRT well at the start of the test was 13.85 feet below the top of casing (TOC), and at the end of the test the pumping water level was 42.88 feet below TOC. The graphical results showing water level drawdown versus time since pumping began for the GMRT well and MW-2 are presented as **Charts 2** and **3**, respectively. **Chart 2** shows the immediate drawdown response in the GMRT well from pumping the <u>lower confined gravel aquifer</u> at a rate of 500 gpm. Within the first hour, adjustments to the pumping rate caused minor fluctuations in the drawdown. **Chart 4** shows a drawdown projection that indicates that total drawdown after + 180 days of continuous pumping at 500 gpm would be approximately 32 feet or 45.85 feet below the surface.

Further evaluation of the lower gravel aquifer was conducted using data from a May 1962 pump test (445 gpm and 520 gpm discharge rates) performed by R.E. Chapman Co.. The pump test data is included as **Appendix E**. Water levels in former observation well OW-8 (screened within the lower gravel aquifer) were monitored during the 1962 pump test. This data is graphically presented as **Chart 5**.

Lincoln Applied Geology, Inc. Environmental Consultants RD # 1 Box 710 • Bristol, Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399 AQTESOLV ground water modeling software was used to analyze this data and obtain aquifer coefficients for transmissivity (T) and to estimate storativity (S). T for the lower confined gravel aquifer was calculated to be 15,360 ft²/day, and S was calculated to be 1.0 x 10⁻¹². These values were obtained using the Papadopulos-Cooper method which was derived for confined aquifers. The value obtained for T appears to be within an acceptable range for gravel aquifers, but the extremely small S value suggests that the aquifer releases little or no water from storage during pumping. This may be an indicator that it's immediate recharge is significant from shallow aquifers and recharge boundaries (i.e. Hoosic River) and not from discharge from the bedrock aquifer. Storativity this low is usually not obtained in field situations. The drawdown information obtained from the upper aquifer monitor wells indicates that the confining layer does allow leaky recharge from above. We believe the S value is too low and not completely representative of the lower aquifer. The transimissivity coefficient is available for use for wellhead protection area definition and in dealing with any potential well interference problems, if encountered.

Chart 3 shows the delayed drawdown response of the upper unconfined aquifer at MW-2 to pumping the lower confined aquifer at 500 gpm. There was a 45 minute delay between when the pump test started and drawdown began at MW-2. The total drawdown in MW-2 at the end of the 7 day pump test was 1.43 feet. **Chart 6** was generated using the AQTESOLV ground water modeling software to analyze the data and T and S values for the unconfined upper aquifer. T is 22,580 ft²/day, and S is 1.025×10^{-3} , both greater than the lower confined aquifer. This T and S were calculated using the Neuman method for unconfined aquifers. Again, we believe that the T value is representative and the S value is not particularly representative of unconfined aquifers. This may be a result of correcting the calculation to handle partially penetrating wells. When the GMRT well is pumping (screened in the lower aquifer) ground water from the upper unconfined aquifer is induced to flow downward through the 'leaky' clay and silt confining layer (aquitard) and into the permeable gravel aquifer.

Charts 7 and **8** show pump test drawdown effects in the upper aquifer for MW-3 and MW-4, respectively. Estimated delayed drawdowns for these wells following startup of the pump test are 20 minutes in MW-3 and 80 minutes in MW-4. Total induced drawdowns of 1.57 feet were recorded in MW-3 and 1.27 feet in MW-4 at the end of the pump test. These data delineate the partial areal extent impacted by the downward leaky condition existing between the upper and lower aquifers when the GMRT well is continually pumped at 500 gpm. This indicates that the confining unit or aquitard allows some level of downward leakage during pumping. These findings may have some significance because the former LUSTs were located within the upper aquifer.

Lincoln Applied Geology. Inc. Environmental Consultants RD #1_Box 710 • Bristol. Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399

7
F. Ground Water Travel Times

The T values for the upper and lower aquifers calculated by the AQTESOLV ground water modeling software were used to determine the hydraulic conductivity (K) of the respective aquifers. The relationship $K = \frac{T}{L}$ was used to calculate the K values for the lower and upper aguifers, where b is the aguifer thickness in feet. The theoretical calculated K of the upper unconfined aquifer is 782 ft/day, and the calculated K of the lower confined aguifer is 591 ft/day. The K values were used to calculate ground water residence (or travel) times for the upper and lower aquifers. With porosities of both the upper and lower aquifer assumed to be 0.3, the ground water travel time between MW-1 and MW-2 (a distance of 295 feet) in the upper unconfined aguifer was calculated to be 0.13 days or 188 minutes under non-pumping (natural) conditions. When the GMRT is pumping at 500 gpm, the travel time decreases to 0.07 days or 96 minutes. Similarly, the ground water travel time over the same distance in the lower aquifer was calculated to be 0.05 days or 73 minutes under natural conditions, and decreased to 0.025 days or 37 minutes under 500 gpm pumping conditions. Although they can't be calculated from this test, travel times for the aguitard or confining unit are several order of magnitude greater than both the upper and lower aquifers.

G. Induced Drawdown Effects

Chart 9 is a distance-drawdown graph that illustrates the relationship between observed drawdown in shallow observation wells located at increasing distances from the GMRT pumping well. As the pumping well stresses and discharges water from the lower gravel aquifer, ground water in the upper unconfined aquifer is induced to flow downward through the sand and gravel aquifer and clay and silt aquitard, thereby recharging ground water to the lower aquifer. This movement of shallow ground water into the lower aquifer causes lowering of the shallow ground water surface, or induced drawdown in the upper aquifer.

The seven monitor wells installed by LAG all penetrate the upper aquifer. Wells closest to the pumping well (MW-2 and MW-3) experienced the greatest induced drawdown effects, while wells at increasingly greater distance from the GMRT well experienced smaller drawdown effects (TPW-1 and MW-1). A projection of the best fit line through the data points indicates that at a distance of 850 feet from the GMRT well, there will be no induced drawdown effects in the upper unconfined aquifer as a result of pumping at 500 gpm. Both wells MW-5 and MW-6 located 2,122 and 2,344 feet from the GMRT well, respectively, experienced no induced drawdown effects that could be positively attributed to the pump test.

Although we believe it is a minor concern (because of the lack of contaminant in the upper aquifer), the induced drawdown effects documented in the upper aquifer

Lincoln Applied Geology. Inc. Environmental Consultants RD # 1 Box 710 • Bristol, Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399

(during the seven day pumping test) will be cyclic when the GMRT well is utilized to supply water to the race track complex. This is because of water storage and the fact that a water supply production well typically pump about 12 hours per day. When the well is not in service water levels readily recover to static levels because of each aquifer's high transmissivity. The induced drawdown impacts to the upper aquifer will also recover during non pumping periods, with a small time lag. As a result, induced drawdown effects will not be continually present in the upper aquifer, thereby, limiting the downward flow characteristic that is present during pumping periods. Our overall opinion is that horizontal upgradient recharge associated with the lateral extent of the lower gravel aquifer is so significant that leakage through the silt/clay confining unit (with an estimated permeability of 10^{-2} to 10^{-6} ft/day) is not.

H. Ground Water Flow

Ground water level data collected under non-pumping conditions on November 14, 1994 and presented in **Table 1** was used to generate the ground water contour map included as **Figure 3**. The direction of ground water flow in the upper aquifer is toward the west and northwest. Data from November 18th during the third day of the pump test shows a similar west and northwest ground water flow direction in the upper aquifer as depicted in **Figure 4**. On the last day of the pump test, November 22nd, the ground water flow direction in the upper aquifer remains the same (although slightly deflected toward the GMRT well), with flow to the west and northwest toward the Hoosic River, as shown on **Figure 5**.

from what ?? The Prover.

Shallow ground water from the upper aquifer in the vicinity of TPW-1 and the former LUST area flows toward the GMRT well under both non-pumping and pumping conditions. The locations of the remaining two 10,000 gallon and one 20,000 gallon fuel oil USTs and the 500 gallon gasoline UST are all in downgradient locations from the GMRT well as shown on **Figure 2**.

I. Water Quality Results During and After the Pump Test

Ground water quality samples were collected from the GMRT well during the pump test and analyzed for BTEX and MTBE. The first sample was collected on November 15, 1994 at 12:56 p.m. after pumping about 61,000 gallons; the second sample was collected on November 18th at 10:20 a.m. after pumping about 2,269,000 gallons; and the third sample was collected on November 21st at 11:40 a.m. after pumping about 4,486,000 gallons. All three ground water samples contained no detectable levels of BTEX and MTBE.

At the end of the seven day pump test on November 22, 1994, ground water quality samples were collected from the GMRT well and six of the seven monitor wells. A water sample could not be obtained from TPW-1 because induced drawdown effects

Lincoln Applied Geology. Inc. Environmental Consultants RD # 1 Box 710 • Bristol, Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399 caused by the GMRT well lowered the ground water level below the bottom of the well. All ground water samples collected contained no detectable levels of BTEX and MTBE. The laboratory results are summarized in **Table 3** and the laboratory reports are included in **Appendix C**.

Water quality sampling and ground water level data indicate that conducting a 500 gpm, 7 day pump test on the GMRT well and stressing the lower aquifer did not cause the low level dissolved BTEX and MTBE contaminants in the vicinity of the former LUSTs to migrate laterally into the downgradient monitor wells or both vertically and laterally into the lower aquifer at the GMRT well.

J. Predicted GMRT Well Ground Water Capture Zones

The AQTESOLV ground water modeling software-derived transmissivity coefficient (T) for the lower confined aquifer was used in the WHPA (Wellhead Protection Area) computer model to evaluate the configuration of lower aquifer ground water capture zones developed by the GMRT well under variable pumping scenarios. WHPA is a ground water model that utilizes aquifer parameters to model ground water flow and well capture zones. Figure 6 shows the ground water capture zone after seven days of pumping the well at 500 gpm. The majority of the ground water supplying the well comes from around and immediately upgradient of the well. The flowlines shown approximate individual flowpaths taken by particles of water as they flow toward the pumping well. Figure 7 shows the hypothetical 'steady state' ground water capture zone at 500 gpm. The western part of the capture zone has intersected the Hoosic River, which behaves as a positive recharge boundary. A portion of the Hoosic River surface water is induced to flow down into and recharge water to the lower aquifer and the GMRT well. The size of the capture zone has increased, but the majority of water supplying the well comes from upgradient or south of the well. To show the effect of pumping rate changes, lowering the long-term pumping rate to 250 gpm, results in the capture zone becoming smaller resulting in isolating it from the Roosic River. Again, the majority of the ground water supplying the well flows from the upgradient area to the south.

The WHPA model calculates capture zones by assuming that the aquifer is homogeneous and isotropic. As a result, the true capture zones probably have somewhat different geometrics. The important information provided by the WHPA model is that the GMRT well derives water from directly upgradient and only after prolonged pumping may induce flow from the Hoosic River. Because the WHPA model is a 2 dimensional model it does not account for ground water flow from the upper aquifer. As a result, the 7 day capture zone calculated by WHPA does not include the regions of the upper aquifer where drawdown actually occurred. This is because the T value for the lower aquifer is high enough to adequately supply all the required yield from the source aquifer to the well. The real capture zone for the GMRT well should

Lincoln Applied Geology. Inc. Environmental Consultants RD # 1 Box 710 • Bristol, Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399

**) {|`* include the area where drawdown occurred in the upper aquifer monitor wells in recognition that it does supply some recharge to the well.

K. Conclusions

A 7-day pump test performed on the GMRT well at a 500 gpm discharge rate during the period November 15 - 22, 1994 has resulted in the following conclusions regarding the GMRT well yield, induced drawdown effects, upper unconfined and lower confined aquifers, ground water capture zones, confirmed dissolved petroleum contamination, and existing petroleum USTs:

- 1. The well yield of the GMRT gravel packed well in the lower confined aquifer has increased since its construction in 1962. The recent 500 gpm pump test caused drawdown in the well of 29.03 feet by the end of the 7-day test, whereas during the 1962 pump test at 445 gpm for 3 days and 520 gpm for 1 day caused drawdown in the well of 39.75 feet. A total drawdown of 32 feet was projected for the GMRT well after +180 days of continuous pumping at 500 gpm (Chart 4). The yield of this well appears more than sufficient to supply the water needs for the GMRT if and when it is put back into operation.,
- The recent 500 gpm pump test caused induced drawdown effects in 5 of the 7 upper aquifer monitor wells. A distance-drawdown graph of this data (Chart 9) indicates that at the end of the 7-day pump test induced drawdown effects in the upper aquifer are limited to within 850 feet of the GMRT well.,
- 3. Transmissivity (T) and storage (S) coefficients of the upper aquifer calculated by the AQTESOLV ground water modeling software using data collected from the November 1994 pump test are 22,580 ft²/day and 1.025 x 10⁻³, respectively. T and S for the lower aquifer May 1962 pump test are 15,360 ft²/day and 1.0 x 10⁻¹², respectively. These data were used in the WHPA ground water model to predict the configuration and extent of the ground water capture zones for the GMRT well under variable 'steady state' 250 gpm and 500 gpm pumping scenarios. The former LUSTs lie within the predicted 250 gpm and 500 gpm GMRT well ground water capture zones.
- 4. The LUST-related contamination levels within the upper aquifer are low to non existent and of minor extent. Ground water quality data collected prior to, during, and after the recent 7-day 500 gpm pump test indicate that the low levels of dissolved BTEX contamination detected in TPW-1 (108 ppb in 4/94 and 83 ppb in 11/94) at the former gasoline and fuel oil

Lincoln Applied Geology. Inc. Environmental Consultants RD # 1 Box 710 • Bristol. Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399 LUST locations did not migrate downgradient into MW-2, MW-3, MW-4, and/or the GMRT well under 500 gpm pumping conditions. It appears that the low level of BTEX contaminants remain in the source area. As ground water from the upper aquifer migrates from the source area, in the direction of the pumping well, the contaminants are adsorbed to soils, biodegraded by naturally occurring subsurface microorganisms, and diluted. The relative risk of these known contaminants migrating vertically and horizontally into the lower aquifer is considered to be low to non-existent, and

5. Presently three fuel oil USTs (two 10,000 gallon and one 20,000 gallon) and one gasoline UST (500 gallon) are located downgradient to the west and northwest of the GMRT well (Figure 2). The upper aquifer ground water flow direction and predicted ground water capture zones under GMRT well pumping conditions indicate that in the event of a petroleum release, it is extremely unlikely that the petroleum would impact the lower aquifer and GMRT well since the predicted ground water capture zones do not include the existing UST areas. Released petroleum product would migrate in multiple phases toward the Hoosic River to the west and northwest.

L. Recommendations

With regard to the conclusions presented above, the following recommendations are made:

- 1. Conduct semiannual ground water quality sampling of all on-site monitor wells and the GMRT well for BTEX and MTBE for the next year. If BTEX levels in TPW-1 continue to decline and no detectable levels of BTEX and MTBE are found in the other wells, then a "site management activity completed" (SMAC) designation will be recommended to the VDEC Hazardous Materials Management Division for the site.
- 2. The new owner(s) of the property should develop a Source Protection Plan (SPP) and Wellhead Protection Area (WHPA) for the GMRT well when the proposed future uses of the property are defined and approved.
- 3. The GMRT well should not be pumped at a rate which results in drawdown in the well below the bottom of the silty clay aquitard (confining layer) i.e. 41 feet below the top of the well casing.

Lincoln Applied Geology. Inc. Environmental Consultants RD # 1 Box 710 • Bristol, Vermont 05443 • (802) 453-4384 • FAX (802) 453-5399 Cu-1

Green Mountain Race Track GENERAL LOCATION MAP

Topo Series Pownal, VT Quad.

.

. ,

Project: Green Mountain Race Track Location: Pownal, Vermont Table 1 VDEC Site # 93-1511 Sheet 1 of 2

Data Point	тос	4/7/94	9/6/94	11/14/94	11/15/94	11/16/94	11/17/94	11/18/94
MW-1	100.00	89.19	87.31	86.89	86.88			86.51
MW-2	99.93	88.58	86.39	86.05	86.03	85.46	85.15	84.95
MW-3	98.43	88.80	86.52	86.19	86.19	85.69	85.40	85.14
MW-4	98.29	89.08	86.74	86.43	86.43	86.16	85.85	85.66
MW-5	95.52	85.76	83.13	82.74	82.74	82.74	82.73	82.73
MW-6	94.27	85.25	82.68	82.37	82.36	82.37	82.35	82.35
TPW-1	98.55	88.24	86.11	85.69	85.66	85.56	85.36	85.24
GMRT Well	99.78		86.15	85.90	85.93	60.17	59.46	58.01

Ground Water Elevation/Product Level (feet)

Notes:

 Elevation datum assumed
 Reference elevation is elevation of top of PVC well casing Light Grey Cell = DRY
 Dark Grey Cell = Inaccessible

Green Mountain Race Track Project: Location: Pownal, Vermont

тос 11/19/94 11/20/94 11/21/94 11/22/94 Data Point 100.00 86.28 86.24 MW-1 84.82 84.75 84.60 MW-2 99.93 84.62 MW-3 98.43 84.94 84.82 84.71 84.62 MW-4 98.29 85.46 85.34 85.22 85.16 MW-5 95.52 82.73 82.73 82.73 82.73 82.35 82.35 82.34 MW-6 94.27 82.35 85.03 84.90 TPW-1 98.55 85.13 57.28 56.88 56.90 GMRT Well 99.78 57.63

Notes: 1 - Elevation datum assumed 2 - Reference elevation is elevation of top of PVC well casing Light Grey Cell = DRY Dark Grey Cell = Inaccessible

Table 1

Sheet 2 of 2

Project: Green Mountain Race Track Location: Pownal, Vermont Table 2 VDEC Site # 93-1511 Sheet 1 of 1

Data Point	4-7-94	11-14-94	11-21-94			
MW-1	0.2	BG	BG			
MW-2	0.9	0.2	BG			
MW-3	BG	0.2				
MW-4	0.2	0.2				
MW-5	BG	BG	BG			
MW-6	BG	BG	BG			
TPW-1	1.0	0.8	0.2		 	
GMRT Well		BG	BG			

Photoionization Results (PID - ppm)

Notes: BG - Background SL - Saturated Lamp Project: Green Mountain Race Track Location: Pownal, Vermont Table 3 VDEC Site # 93-1511 Sheet 1 of }

Data Point		4-7-94	11-14-94	11-15-94	11-18-94	11-21-94	11-22-94
		1	<5				<5
MW-I	<6		<6				<6
		1	<5				<5
MW-2	<6		<6				<6
		<1	<5				<5
MW-3	<6		<6				<6
		<1	<5				<5
MW-4	<6		<6				<6
		<1	<5				<5
MW-5	<6		<6				<6
		<	<5				<5
MW-6	<6		<6				<6
		<1	<1				
TPW-1	108		83				a e se chiques dana e se
20K UST Pit							
			<5	<5	<5	<5	<5
GMRT Well			<6	<6	<6	<6	<6
	1						
			-				•
					1		

Ground Water Quality Results (ppb)

NOTES: MTBE in upper right corner of cell BTEX in tower left corner of cell < - Contaminant not detected at specified detection limit

Green Mountain Race Track 500 gpm Pump Test of GMRT Well November 15-22, 1994

.

Drawdown in MW-2 November 15-22, 1994

Green Mountain Race Track

Time stince pumping began (min.)

Green Mountain Race Track 500 gpm Pump Test of GMRT Well November 15-22. 1994

ŗ

Appendix A

GMRT Well Log and Monitor Well Logs

¢.				n. e. ula Oakdal	e ivies E, ma	lin v ISS.				MAY 31 1962 35
Nome of I	Driller <u>I</u>	in Al	mmin	Nan Nan	es of H	elpers	Fine	6 Fin	Jay	×
Job: Name	& Locatio	n De j	Matte	- Constructions	Por	2071	al 2	t R	da	Frack
Date Start	ed 5-7	-62	Date F	inished 5-25-62	Dale	Stort	ed		Dale	finished
Hole No.	1 2	4" X 18	-" Su	avel Packed Will	Hole	No.				
Depth	C	lassification	of		Dept	h	с	lassification	of	
From To		Material		Feet of Screen Exposed .	From	То	·	Material		Feet of Screen Exposed
0' 12'	top 1	il+ t	savel	15-0"			·			_
12' 30'	Hard	tan T x	trac	Size of Screen & Slot			 			Size of Screen & Slot
30' 41	Clay	+-Si	lt	18" Saren	 					_
- 41 48	Mud	Dia	vel	Screen Left in						Screen Left in
48 57	mul	. Isa	vel	1						_
_ 57 64	mia	1. G.	avel_	Screen Puiled Out	 		 			- Screen Pulled Out
64' 61	Shar	1. Ligi	b Jun	L.			 			_
										- Ding Laft in
	total	dept	h of	Pipe Left in Z						
:	Hall	67-	0"	32-0 18						Bine Dullad Out
				Pipe Pulled Out						Pipe Pulled Out
·				······						
···				Remarks			 			Remarks
·										
										
~										
								· · · · · · · · · · · · · · · · · · ·		
		P	ump Test o	n Hole No.				F	ump Test	on Hole No.
Date	Time	Dr. Down	G. P. M.	Static and Other Inlo.	Da	le	Time	Dr. Down	G, P. M.	Static and Other Info.
·				······································						
-										
:		·								
							 	·	<u>-</u>	 ;
		ļ			ļ		- <u>-</u>			
					ļ			_		·································
								<u> </u>	<u> </u>	
-		_			Ì					
					[· · ·		
┓										
		 				.	_			
_ _]	 		 		 	 		
<u> </u>		I,	<u></u>						.	

	WELL: LOCATION: DRILLER: HYDROGEOLOGIST	TPW-1, Former location of UST #3B 2,000 gallon gasoline (LUST) Green Mountain Race Track, Pownal, VT East of garage. T.L. Boise Excavating, Inc. William Norland, Lincoln Applied Geology, Inc.	
<u> </u>	DATE:	November 11, 1993	
	Soils Description:	(BG = <u>B</u> ackground [0.2], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> e	er <u>M</u> illion)
_	<u>Depth</u>	Description	<u>PID (ppm)</u>
	0 - 1'	Brown, dry, topsoil	BG
_	1 - 2.5'	Tan brown, dry, medium to coarse sand; some gravel	10 - 20
	2.5 - 4'	Grey, dry, silt & fine sand; little clay, gasoline odor	10 - 22
-	4 - 5.5'	Tan brown, dry, medium to coarse sand; some fine sand	10 - 22
	5.5 - 14.8'	Brown and grey, dry to wet, <u>boulders & cobbles & gravel</u> ; some fine to coarse sand	3 - 8 (6') 10 - 18 (8') 240 (11') 50 - 60 (12.5')
		Ground water encountered at 12.5 feet Base of LUST at 8' depth	
_	Well Construction:		
-	Bottom of Boring: Bottom of Well: Well Screen:	14.8' 14.8' (3.3') 11.5 to 14.8'; 2" PVC hand slotted, Sch 40	
	Solid Riser:	(T1.5) U to T1.5; Z" PVC, SCH 40	

Bentonite Seal: None Backfill: (14.8') backfilled with excavated soils

None

None

Well Box:

Sand Pack:

- _

~

	WELL: Location: Driller: Hydrogeologis ⁻	MW-1, Upgradient well near corner of track kitchen bldg. Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. T: William Norland, Lincoln Applied Geology, Inc.	
	DATE:	March 28, 1994	
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> e	r <u>M</u> illion)
	<u>Depth</u>	Description	PID (ppm)
	0 - 0.25'	Asphalt pavement 3"	
	0.25' - 2'	Dry to moist, tan, fine to medium şand, some gravel.	BG
	2' - 4'	8" moist, tan, <u>fine to medium sand;</u> little gravel; 4" moist, tan <u>silt;</u> some very fine sand; fine sand	BG
_	4' - 6'	12" moist, tan, <u>silt</u> and fine sand; little very fine sand; rust staining minor 2" moist, tan brown, <u>silt</u> and fine sand; little fine to medium gravel	BG
	ઈ ' - 8'	Dry, tan and buff, <u>fine gravel;</u> some fine to coarse sand; trace medium to coarse gravel. Very hard and 'boney'.	BG
	8' - 9.5'	Dry, tan and brown, <u>fine to medium gravel;</u> some fine to coarse sand; trace coarse gravel. Coarse gravels.	BG
	9.5' - 11.5'	Dry to moist, tan, fine to medium gravel; some fine to coarse sand; trace coarse gravel.	BG
_	11.5' - 13.5'	Wet, brown, <u>fine to medium sand;</u> some fine to medium gravel; trace coarse sand. Not much recovery - in water, saturated @ 11.4' (inside augers)	BG
	13.5' - 15.5'	Wet, brownish grey, <u>medium to coarse sand;</u> some fine to medium gravel; little fine sand. No odors.	BG
_	15.5' - 17.5'	Wet, brownish grey, <u>medium to coarse sand;</u> some fine to medium gravel; little fine sand.	BG
	17.5' - 19.5'	3" wet, brownish grey, <u>medium to coarse sand;</u> little fine sand; trace fine gravel. 9" wet, brown, <u>fine sand;</u> little silt; trace medium sand.	BG
	19.5' - 21.5'	Wet, brown, fine to medium sand; some silt; trace coarse sand, fine gravel.	BG
_	21.5' - 23.5'	Wet, brown, fine to medium sand; some silt; trace coarse sand, fine gravel	BG
	23.5' - 25.5'	Wet, brown, fine to medium sand; some coarse sand, little silt.	BG

Well Contruction:

25.5 Bottom of Boring: 25.5' Bottom of Well: (20') 5.5' - 25.5' - 2" PVC, sch 40, 0.020" slot Well Screen: Solid Riser: (5') 0.5' - 5.5' - 2" PVC, Sch 40 (21.5') 4' - 25.5' - #1 sand Sand Pack: Bentonite Seal: (2') 2' - 4', holeplug and enviroplug Backfill: (1.5') 0.5' - 2' Well Box: Flush with grade

37

Lincoln Applied Geology, Inc., RD#1 Box 710, Bristol, Vermont 05443

_`	. <u></u>	WELL LOG	
	WELL:	MW-2, between LUST source area and GMRT pumping well (house) - e kennels	dge (corner) of dog
—	LOCATION: DRILLER:	Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc.	
	HYDROGEOLOGIS) DATE:	 William Norland, Lincoln Applied Geology, Inc. March 28, 1994 	
	Soils Description:	(BG = <u>Backg</u> round [0.3], SL = <u>S</u> aturated <u>Lamp</u> [>500], ppm = <u>Parts P</u>	er <u>M</u> illion)
-	Depth	Description	PID (ppm)
	0 - 0.25'	Asphalt pavement.	
	0.25' - 0.5	Gravel/Sand subbase (fill)	
	0.5' - 4'	Moist, brown, fine to very fine sand and silt, trace fine gravel.	BG
	4' - 6'	12" moist, brown to dark brown, <u>very fine sand and silt;</u> trace fine gravel 6" moist, tan, <u>very fine sand and silt;</u> trace roots	BG
	9' - 11'	 2" moist, brown, <u>very fine sand and silt</u>; little fine sand and fine gravel. 4" moist to dry, brown, <u>medium to coarse sand</u>; some fine to medium gravel; little fine sand 	BG
~	14' - 15.5'	Wet, brown, <u>fine to medium gravel</u> ; some medium to coarse sand; trace coarse gravel. Water approx. 12' inside augers.	BG
_	19' - 21'	Wet, brown, medium to coarse sand; little fine to medium gravel, fine sand. 3' of sands into augers, heaving.	BG
		Overdrill to 28' depth, install well.	
—			

38

Well Contruction:

-

-	Bottom of Boring: Bottom of Well:	28' 25.5'
	Well Screen:	(20') 5.5' - 25.5' - 2" PVC, sch 40, 0.020" slot.
	Solid Riser:	(5') 0.5' - 5.5' - 2" PVC, Sch 40
	Sand Pack:	(24') 4' - 28'
	Bentonite Seal:	(2') 2' - 4'
	Backfill:	(1.5') 0.5' - 2'
~	Well Box:	Cemented flush with grade.

_	WELL: LOCATION: DRILLER: HYDROGEOLOGIST DATE:	MW-3 Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. William Norland, Lincoln Applied Geology, Inc. March 29, 1994		
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> e	r <u>M</u> illion)	
	Depth	Description	PID (ppm)	
_	0 - 0.25'	Asphalt pavement		
	0.25' - 1.25'	Sand and gravel fill	BG	
_	2' - 4'	3" moist, brown, <u>medium to coarse sand and fine to medium gravel</u> 11" moist, dark brown, <u>fine to very fine sand;</u> some silt; trace roots 6" moist, tan, <u>fine to very fine sand;</u> some silt	BG	
_	4' - 6'	Moist, brown and tan, <u>silt and very fine sand;</u> little fine sand 1" layer of fine sand; some very fine sand @ 8' depth; darker brown color	BG	
-	6' - 8'	6" moist, brown, <u>silt and very fine sand;</u> little fine sand. 3" <u>medium to coarse sand;</u> some fine to medium gravel; little fine sand.	BG	
	8' - 10'	Moist, brown to olive, fine to coarse gravel; some coarse sand; little to trace medium sand	BG	
-	10' - 12'	Wet - in water, brown, medium to coarse gravel; some coarse sand; little fine to medium sand. 'Boney' drilling.	BG	
_	12' - 14'	6" wet, brown, <u>medium to coarse gravel;</u> some medium to coarse sand; little fine sand. 4" wet, tan upper, grey lower, <u>silty clay;</u> little fine gravel 1" <u>fine to very fine sand;</u> little silt.	BG	
-	14' - 16'	Wet, brown, fine to medium sand; little silt; trace coarse sand. At 15" depth approx 1" thick tan, silty clay layer.	BG	
	16' - 18'	Wet, brown, fine to medium sand; some coarse sand; little silt	BG	
	18' - 20'	15" wet, brown, <u>fine to medium sand;</u> some coarse sand; little silt 9" wet, brown, <u>very fine sand and silt;</u> some fine sand.	BG	
	20' - 20.5'	Wet, brown, <u>very fine sand and silt;</u> little fine sand. Auger to 28', heaving B sands.		
_	24' - 26'	Heaving sands of fine to medium sand; silt.		

Well Contruction:

-	Bottom of Boring: Bottom of Well: Wall Screen:	28' 25.5' (20') 5.5' - 25.5', 2" PVC, sch 40, 0.020" slot
	Solid Riser:	(5') 0.5' - 5.5', 2" PVC, Sch 40
	Sand Pack:	(26') 2' - 28'
	Bentonite Seal:	(1') 1' - 2'
	Backfill:	(0.5') 0.5' - 1'
	Well Box:	Cemented flush with grade
		-

_	Well: Location: Driller: Hydrogeologist Date:	 MW-4, West of LUSTs beside GMRT roadway. Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. William Norland, Lincoln Applied Geology, Inc. March 29, 1994 	
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> er	<u>M</u> illion)
_	<u>Depth</u>	Description	PID (ppm)
	0 - 0.25'	Asphalt pavement	
	0.25' - 1.25'	Sand and gravel	BG
_	4' - 6'	3" moist, brown, <u>very fine sand and silt</u> 2" moist, tan, <u>fine to medium sand;</u> little coarse sand 7" moist, tan, <u>very fine sand and silt</u> 4" moist, tan, <u>fine to medium sand;</u> trace coarse sand At 6' depth - gravel and cobbles - very difficult drilling	BG
	9' - 9.5'	No recovery - on boulder or cobble Drill to approx 10' - refusal on boulder. Remove augers, backup rig approx 6- 7'. Drill to 5.5' depth - hit gravel and cobbles to 13'	
	14' - 16'	Wet, brown, fine to medium sand; some silt	BG
		Heaving sands into augers, drill to 28' and install well.	

_

Well Contruction:

-	Bottom of Boring:	28'
	Bottom of Well:	24.5'
	Well Screen:	(20') 4.5' - 24.5', 2" PVC, sch 40, 0.020" slot
	Solid Riser:	(4') 0.5' - 4.5', 2" PVC, Sch 40
	Sand Pack:	(24.5') 3.5' - 28'
	Bentonite Seal:	(2') 1.5' - 3.5'
	Backfill:	(1') 0.5' - 1.5'
-	Well Box:	Cemented flush with grade

_	WELL: LOCATION: DRILLER: HYDROGEOLOGIS [*] DATE:	MW-5, At W. end of former 20K gal UST Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. I: William Norland and Rick Vandenberg, Lincoln Applied Geology, Inc. March 29 and 30, 1994	
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> e	r <u>M</u> illion)
_	Depth	Description	<u>PID (ppm)</u>
-	0	Unpaved grass area	
-	2' - 4'	10" moist, tan, <u>very fine sand and silt;</u> little fine sand; trace fine gravel 12" moist, grey, <u>silt and very fine sand;</u> little fine sand	BG
	4' - 6'	Moist, grey, silt and very fine sand; trace fine sand (organics)	BG
-	6' - 8'	19" Moist, grey, <u>silt and very fine sand;</u> little to trace fine sand; trace roots Bottom 2" is coarser; more fine sand and medium sand (organics odor)	BG
-	8' - 10'	3" wet, grey to olive green, <u>silt and fine sand;</u> trace roots; clay 3" wet <u>fine to coarse gravel;</u> some silt; fine sand; trace medium to coarse sand	
-	10' - 12'	Wet, grey to olive green, <u>fine to coarse gravel;</u> some silt; fine sand; little medium to coarse sand	BG
	12' - 14'	Grey silt and medium to coarse sand; some coarse gravel, very fine sand	BG
	14' - 16'	<u>Medium to fine sand;</u> grey; some silt; trace coarse gravel, coarse sand. Very well sorted	BG
	16' - 18'	Top 6" <u>fine to very fine sand,</u> grey; some silt , fine to medium gravel; bottom 9" <u>silty fine sand;</u> olive	BG
-	18' - 20'	Silty clay with trace of very fine sand, olive	BG
	20' - 22'	Silty clay with alternating bands of fine sand, tan	BG
	22' - 24'	Silty clay with alternating bands of fine sand, tan	BG
	24' - 26'	Silty clay with alternating bands of tan sand; fine to medium; grey also	BG

_

Well Contruction:

	Bottom of Boring:	26'
	Bottom of Well:	25'
_	Well Screen:	(20') 5' - 25', 2" PVC, sch 40, 0.020" slot
	Solid Riser:	(8') +3' - 5', 2" PVC, Sch 40.
	Sand Pack:	(21') 4' - 25'
	Bentonite Seal:	(2') 2' - 4'
- .	Backfill:	(1.5') 0.5' - 2'
	Well Box:	Stick up well guard
	<i>.</i>	

	WELL: LOCATION: DRILLER: HYDROGEOLOGIS ⁻ DATE:	MW-6 Green Mountain Race Track, Pownal, VT Tri-State Drilling and Boring, Inc. T: Rick Vandenberg, Lincoln Applied Geology, Inc. March 30, 1994		
	Soils Description:	(BG = <u>B</u> ackground [0.3], SL = <u>S</u> aturated <u>L</u> amp [>500], ppm = <u>P</u> arts <u>P</u> er	r <u>M</u> illion)	
	Depth	Description	PID (ppm)	
-	0 - 4'	Tan to light brown; fine to very coarse sand, some fine to coarse gravel; trace cobble, silt.	BG	
_	4' - 6'	Light brown; fine to very coarse sand; some fine to coarse gravel; trace silt.	BG	
	8' - 10'	Light brown; fine to very coarse sand; some fine to medium gravel; some cobble; some silt.		
_	14' - 16'	Light brown; sand, <u>coarse to very coarse</u> , some fine to medium sand; some gravel fine to medium; trace cobble	BG	
<u> </u>	16' - 18'	Grey; silty clay; some interbeds of tan fine sand.	BG	

.

ļ

_	Bottom of Boring:	28'
	Bottom of Well:	25'
	Well Screen:	(20') 5' - 25', 2" PVC, sch 40, 0.020" slot
_	Solid Riser:	(8') +3' - 5', 2" PVC, Sch 40.
	Sand Pack:	(21') 4' - 25'
	Bentonite Seal:	(2') 2' - 4'
	Backfill:	(1.5') 0.5' - 2'
-	Well Box:	Stick up well guard

Appendix B

Ground Water Quality Laboratory Reports

LABORATORY ANALYSIS

and the sum

	CLIENT NAME:	Lincoln Applied Geology	REF #:	10185
•	ADDRESS:	RD#1 Box 710	PROJECT NO.:	not given
		Bristol, VT 05443		
-				
	SAMPLE LOCATION:	Green Mountain Race Track	DATE OF SAMPLE:	11/14/94
	SAMPLER:	James Robideau & Bill Norland	DATE OF RECEIPT:	11/14/94
			DATE OF ANALYSIS:	11/22,11/23/94
	ATTENTION:	John Amadon/Bill Norland	DATE OF REPORT:	11/25/94
-				

Pertaining to the analyses of specimens submitted under the accompanying chain of custody form, please note the following:

- Water samples submitted for VOC analysis were preserved with HCl. The trip blank was prepared by the client from reagent water supplied by the laboratory.
- Specimens were processed and examined according to the procedures outlined in the specified method.
- Holding times were honored.
- Instruments were appropriately tuned and calibrations were checked with the frequencies required in the specified method.
- Blank contamination was not observed at levels interfering with the analytical results.
- Continuing calibration standards were monitored at intervals indicated in the specified method. The resulting analytical precision and accuracy were determined to be within method QA/QC acceptance limits.
- The efficiency of analyte recovery for individual samples was monitored by the addition of surrogate analytes to all samples, standards, and blanks. Surrogate recoveries were found to be within laboratory QA/QC acceptance limits, unless noted otherwise.

Reviewed by:

Brendan McMahon, Ph.D. Director, Chemical Services

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

	CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
	PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,185
	REPORT DATE:	November 25, 1994	STATION:	GMRT Well
	DATE SAMPLED:	November 14, 1994	TIME SAMPLED:	13:44
-	DATE RECEIVED:	November 14, 1994	SAMPLER:	Robideau & Norland
	ANALYSIS DATE:	November 23, 1994	SAMPLE TYPE:	Water

—	PARAMETER	PQL (µg/L)	Conc. (µg/L.)
	Benzene	1	BPQL
	Toluene	1	BPQL
-	Ethylbenzene	1	BPQL
,. 	Xylenes	3	BPQL
	MTBE	5	BPQL

Surrogate % Recovery: 98%

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,185
REPORT DATE:	November 25, 1994	STATION:	MW-1
DATE SAMPLED:	November 14, 1994	TIME SAMPLED:	12:00
DATE RECEIVED:	November 14, 1994	SAMPLER:	Robideau & Norland
ANALYSIS DATE:	November 22, 1994	SAMPLE TYPE:	Water

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
	Benzene	1	BPQL
	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
-	Xylenes	3	BPQL
<u> </u>	мтве	5	BPQL
		I contraction of the second	1

Surrogate % Recovery: 99%

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
 PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,185
REPORT DATE:	November 25, 1994	STATION:	MW-2
DATE SAMPLED:	November 14, 1994	TIME SAMPLED:	13:24
 DATE RECEIVED:	November 14, 1994	SAMPLER:	Robideau & Norland
ANALYSIS DATE:	November 22, 1994	SAMPLE TYPE:	Water

_	PARAMETER	PQL (µg/L)	Conc. (µg/L)
	Benzene	1	BPQL
	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
_	Xylenes	3	BPQL
	MTBE	5	BPQL
	•		

Surrogate % Recovery: 101%

BPQL = Below Practical Quantitation Limit (PQL)

and the second sec

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

	CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
	PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,185
_,	REPORT DATE:	November 25, 1994	STATION:	MW-3
	DATE SAMPLED:	November 14, 1994	TIME SAMPLED:	13:15
_	DATE RECEIVED:	November 14, 1994	SAMPLER:	Robideau & Norland
	ANALYSIS DATE:	November 22, 1994	SAMPLE TYPE:	Water

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
	Benzene	1	BPQL
!	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
-	Xylenes	3	BPQL
	MTBE	5	BPQL

Surrogate % Recovery: 99%

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

				· · · · · · · · · · · · · · · · · · ·
	CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
<u></u>	PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,185
	REPORT DATE:	November 25, 1994	STATION:	MW-4
	DATE SAMPLED:	November 14, 1994	TIME SAMPLED:	12:30
	DATE RECEIVED:	November 14, 1994	SAMPLER:	Robideau & Norland
	ANALYSIS DATE:	November 22, 1994	SAMPLE TYPE:	Water

—

,	PARAMETER	PQL (µg/L)	Conc. (µg/L)
	Benzene	1	BPQL
	Toluene	1	BPQL
—	Ethylbenzene	1	BPQL
-	Xylenes	3	BPQL
-	MTBE	5	BPQL

Surrogate % Recovery: 98%

BPQL = Below Practical Quantitation Limit (PQL)

and a second

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

lorland
10

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
ļ	Benzene	1	BPQL
	Toluene	1	BPQL
[Ethylbenzene	1	BPQL
-	Xylenes	3	BPQL
-	MTBE	5	BPQL

Surrogate % Recovery: 100%

BPQL = Below Practical Quantitation Limit (PQL)

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

	CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
-	PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,185
	REPORT DATE:	November 25, 1994	STATION:	MW-6
	DATE SAMPLED:	November 14, 1994	TIME SAMPLED:	13:02
-	DATE RECEIVED:	November 14, 1994	SAMPLER:	Robideau & Norland
	ANALYSIS DATE:	November 22, 1994	SAMPLE TYPE:	Water
_	DATE SAMPLED: DATE RECEIVED: ANALYSIS DATE:	November 14, 1994 November 14, 1994 November 22, 1994	TIME SAMPLED: SAMPLER: SAMPLE TYPE:	13:02 Robideau & Norland Water

—	PARAMETER	PQL (µg/L)	Conc. (µg/L)
_	Benzene	1	BPQL
_	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
	Xylenes	3	BPQL
-	MTBE	5	BPQL

Surrogate % Recovery: 99%

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given					
PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,185					
REPORT DATE:	November 25, 1994	STATION:	TPW-1					
DATE SAMPLED:	November 14, 1994,	TIME SAMPLED:	11:35					
DATE RECEIVED:	November 14, 1994	SAMPLER:	Robideau & Norland					
ANALYSIS DATE:	November 23, 1994/	SAMPLE TYPE:	Water					
	and to fin	mp						
	prov o pr							
	1 · . de							
	,	,						
PARAMETER	PQL (ıg/L)	Conc. (µg/L)					
Dongono	1		וחממ					
Denzene	I	3						
Toluene	1		2					
Ethylbenzene	1		3					
N/ James	2		77					
Aylenes	3		//					
MTBE	5		BPQL					
	Surrogate % Re	covery: 100%	:					
BPQL = Below Practical Quantitation Limit (PQL)								

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

	CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
_	PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,185
	REPORT DATE:	November 25, 1994	STATION:	Trip Blank
	DATE SAMPLED:	November 14, 1994	TIME SAMPLED:	07:12
-	DATE RECEIVED:	November 14, 1994	SAMPLER:	Robideau & Norland
	ANALYSIS DATE:	November 23, 1994	SAMPLE TYPE:	Water

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
	Benzene	1	BPQL
	Toluene	1	BPQL
, <u> </u>	Ethylbenzene	1	BPQL
	Xylenes	3	BPQL
~~~	MTBE	5	BPQL

Surrogate % Recovery: 97%

.

BPQL = Below Practical Quantitation Limit (PQL)

MicroAssays of Vermont, Inc. P.O. Box 189 Middlesex, Vermont 05602 (802) 223-1468 FAX 223-8688

	Page	+ 5 +	MAV #	¥	c & 0 v				REMARKS:		Callected by											Date/Time
YSIS REQUESTED					· · · · ·	· · · · ·															-	Received by:
ANAL			×	<u>ې د</u>	71		~ X	97	.8	~ ~	7	1	t /	7 2	7 7	7	r Z	7 2				Relinquished by:
				7 0544 3					t. ervd Type	Het your u	Hei yomin	Her youn'LI	Hec 400000	Her yestic	Iter yom."II	1766 410 141 1	Her Hardin	1460 4000100				Date/Time
of Varmont	0. Box 189 0. Box 189 05602	(802)223-8688	ed Geolog.	2 Bristey V	RACE TIAC			- Bill ~	# of Time con	7:12 2	11:35 2	12:00 2	12:30 2	12:40 2	1:02 2	1:15 z	1: 24 z	1.444	 	-		 d bv:
nn Aseaver	DI UASSAYS (RR# Box 5210 P.(Monthaller, VT (302)223-1468 Fax	in APPLI	1 Ber 7/4	ten mth		Bill a	James 12	Date	11-14-94	11-14-94	11-14-94	44-44	8 11- 14-94	11-14-44	0 11-14-94	11-14-91	11-14-94			 	l Received
Alice And		Ph. (8	CLIENT NAME LINCO	VDDRESS X D/	PROJECT NAME	PROJECT NUMBER	PROJECT MANAGER	SAMPLER	Sample Location	A TO dirt v	· TPW-10KN8	1 MW- 1 OK NO	" MW-4 I NE	MW-S N	ML C NF	1 m w - 2 . 1 W	WE. 2 C NI	OMRT Well	-			Relinauished by:

LABORATORY ANALYSIS

CLIENT NAME:	Lincoln Applied Geology	REF #:	10195
ADDRESS:	RD#1 Box 710	PROJECT NO .:	not given
	Bristol, VT 05443		
SAMPLE LOCATION:	Green Mountain Race Track	DATE OF SAMPLE:	11/15/94
SAMPLER:	Bill Norland	DATE OF RECEIPT:	11/16/94
		DATE OF ANALYSIS:	11/23/94
ATTENTION:	John Amadon/Bill Norland	DATE OF REPORT:	12/2/94

Pertaining to the analyses of specimens submitted under the accompanying chain of custody form, please note the following:

- Water samples submitted for VOC analysis were preserved with HCl.
- Specimens were processed and examined according to the procedures outlined in the specified method.
- Holding times were honored.
- Instruments were appropriately tuned and calibrations were checked with the frequencies required in the specified method.
- Blank contamination was not observed at levels interfering with the analytical results.
- Continuing calibration standards were monitored at intervals indicated in the specified method. The resulting analytical precision and accuracy were determined to be within method QA/QC acceptance limits.
- The efficiency of analyte recovery for individual samples was monitored by the addition of surrogate analytes to all samples, standards, and blanks. Surrogate recoveries were found to be within laboratory QA/QC acceptance limits, unless noted otherwise.

đ

LINCOLN APPLIED GL.

Reviewed by:

Brendan McMahon, Ph.D. Director, Chemical Services

MicroAssays of Vermont, Inc. P.O. Box 189 Middlesex, Vermont 05602 (802) 223-1468 FAX 223-8688

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
 PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,195
 REPORT DATE:	December 2, 1994	STATION:	GMRT Well
DATE SAMPLED:	November 15, 1994	TIME SAMPLED:	12:56
 DATE RECEIVED:	November 16, 1994	SAMPLER:	Bill Norland
ANALYSIS DATE:	November 23, 1994	SAMPLE TYPE:	Water
ANALYSIS DATE:	November 23, 1994	SAMPLE TYPE:	water

PQL (µg/L) Conc. (µg/L) PARAMETER BPQL 1 Benzene BPQL ì Toluene Ethylbenżene BPQL 1 BPQL Xylenes 3 BPQL 5 MTBE Surrogate % Recovery: 96% BPQL = Below Practical Quantitation Limit (PQL)

56

LINCOLN AFPLIED (M.

CHANN OF CHRYDRA DECORD

COLN APPLIED GEOMEN

LABORATORY ANALYSIS

CLIENT NAME:	Lincoln Applied Geology	REF #:	10208
ADDRESS:	RD#1 Box 710	PROJECT NO.:	not given
	Bristol, VT 05443		Ŭ
SAMPLE LOCATION:	Green Mountain Race Track	DATE OF SAMPLE:	11/18/94
SAMPLER:	Bill Norland	DATE OF RECEIPT:	11/18/94
		DATE OF ANALYSIS:	11/28/94
ATTENTION:	John Amadon/Bill Norland	DATE OF REPORT:	12/2/94

Pertaining to the analyses of specimens submitted under the accompanying chain of custody form, please note the following:

- Water samples submitted for VOC analysis were preserved with HCl.
- Specimens were processed and examined according to the procedures outlined in the specified method.
- Holding times were honored.
- Instruments were appropriately tuned and calibrations were checked with the frequencies required in the specified method.
- Blank contamination was not observed at levels interfering with the analytical results.
- Continuing calibration standards were monitored at intervals indicated in the specified method. The resulting analytical precision and accuracy were determined to be within method QA/QC acceptance limits.
- The efficiency of analyte recovery for individual samples was monitored by the addition of surrogate analytes to all samples, standards, and blanks. Surrogate recoveries were found to be within laboratory QA/QC acceptance limits, unless noted otherwise.

Reviewed by:

Brendan McMahon, Ph.D. Director, Chemical Services

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
 PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,208
REPORT DATE:	December 2, 1994	STATION:	GMRT Well
 DATE SAMPLED:	November 18, 1994	TIME SAMPLED:	10:20
 DATE RECEIVED:	November 18, 1994	SAMPLER:	Bill Norland
ANALYSIS DATE:	November 28, 1994	SAMPLE TYPE:	Water

—

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
	Benzene	1	BPQL
_	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
-	Xylenes	3	BPQL
-	MTBE	5	BPQL

Surrogate % Recovery: 98%

S & 10.

r—			<u> </u>					<u> </u>	<u> </u>	T	1	Γ	Γ_			[Ĺ				60	
	Page	# NAN		کر ا	10208) 		REMARKS:												Date/Time	•]
SIS REQUESTED						ar _d	34 M	70201										,		Received by:			
ANALYS		÷		- dp		<u>م</u>									 		-			Relinquished by:			
nt	88	Inc,	NT ostyz					# of pres Sample cont. ervd Type	2 Ifc, com/vbA	Walter							· ·			Date/Time	17:30 11/18/54		1 1
Assave of Vermo	3# Box 5210 P.O. Box 189 Montpelier, VT 05602)223-1468 Fax (802)223-86	Applied Geology .	Box 710 Bristol,	1 Mtn. Race Track		1 Norland	And	Date	11/18/94 1020									· · · · · · · · · · · · · · · · · · ·		C Beceiv/ed/by:			-
Minn	Ph. (802	IENT NAME LINCOLU	DRESS RD I	OJECT NAME Green	ROJECT NUMBER	ROJECT MANAGER BUC	MPLER Biel Norl	Sample Location	JMRT Well											"Relinquished by;	What What ~	-	-

SACOLN APPLIED

LABORATORY ANALYSIS

CLIENT NAME:	Lincoln Applied Geology	REF #:	10216
ADDRESS:	RD#1 Box 710	PROJECT NO .:	not given
	Bristol, VT 05443		
SAMPLE LOCATION:	Green Mountain Race Track	DATE OF SAMPLE:	11/21/94
SAMPLER:	James Robideau	DATE OF RECEIPT:	11/21/94
		DATE OF ANALYSIS:	11/23/94
ATTENTION:	John Amadon/Bill Norland	DATE OF REPORT:	12/2/94

Pertaining to the analyses of specimens submitted under the accompanying chain of custody form, please note the following:

- Water samples submitted for VOC analysis were preserved with HCl.
- Specimens were processed and examined according to the procedures outlined in the specified method.
- Holding times were honored.
- Instruments were appropriately tuned and calibrations were checked with the frequencies required in the specified method.
- Blank contamination was not observed at levels interfering with the analytical results.
- Continuing calibration standards were monitored at intervals indicated in the specified method. The resulting analytical precision and accuracy were determined to be within method QA/QC acceptance limits.
- The efficiency of analyte recovery for individual samples was monitored by the addition of surrogate analytes to all samples, standards, and blanks. Surrogate recoveries were found to be within laboratory QA/QC acceptance limits, unless noted otherwise.

Reviewed by:

Brendan McMahon, Ph.D. Director, Chemical Services

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

	CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
_	PROJECT NAME:	Green Mountain Race Track	MAV REF.#:	10,216
	REPORT DATE:	December 2, 1994	STATION:	GMRT Well
	DATE SAMPLED:	November 21, 1994	TIME SAMPLED:	11:40
-	DATE RECEIVED:	November 21, 1994	SAMPLER:	James Robideau
	ANALYSIS DATE:	November 23, 1994	SAMPLE TYPE:	Water

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
_	Benzene	1	BPQL
	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
—	Xylenes	3	BPQL
	MTBE	5	BPQL

Surrogate % Recovery: 97%

	Page		WAV #		$ 20 _{1}$			REMARKS:											
A N I N I N I				<i>\$11.</i>	 1/ -		2]	ET ST											
	I			1100				es Sample vd Type	1 Yer. 11					 					
	'nt	Ø	(eecos)	14 05				# of pr cont. er	2 116		 		 						
	of Vermo 0. Box 189 05602	(802)223-868	11	1-1 Zel		5		Time	11:40			-							
	ASSAVS (# Box 5210 P. lontpeller, VT	223-1468 Fax	ola di	10/2 m		8, 10	2 3	Date	11-21-94							and the second			
	Micro	Ph. (802);	NAME LINC	TNAME G Ver	T NUMBER	T MANAGER	R JOM-	mple Location	MTH RACE Track Per						****		OLN	Arp.	1

LABORATORY ANALYSIS

NCOLN APPLIED CONTE

CLIENT NAME:	Lincoln Applied Geology	REF #:	10227
ADDRESS:	RD#1 Box 710	PROJECT NO .:	not given
	Bristol, VT 05443		
SAMPLE LOCATION:	Green Mtn. Race Track	DATE OF SAMPLE:	11/22/94
SAMPLER:	James Robideau	DATE OF RECEIPT:	11/22/94
		DATE OF ANALYSIS:	12/05, 12/06/94
ATTENTION:	John Amadon/Bill Norland	DATE OF REPORT:	12/12/94

Pertaining to the analyses of specimens submitted under the accompanying chain of custody form, please note the following:

- Water samples submitted for VOC analysis were preserved with HCl. The trip blank was prepared by the client from reagent water supplied by the laboratory.
- Specimens were processed and examined according to the procedures outlined in the specified method.
- Holding times were honored.
- Instruments were appropriately tuned and calibrations were checked with the frequencies required in the specified method.
- Blank contamination was not observed at levels interfering with the analytical results.
- Continuing calibration standards were monitored at intervals indicated in the specified method. The resulting analytical precision and accuracy were determined to be within method QA/QC acceptance limits.
- The efficiency of analyte recovery for individual samples was monitored by the addition of surrogate analytes to all samples, standards, and blanks. Surrogate recoveries were found to be within laboratory QA/QC acceptance limits, unless noted otherwise.

Reviewed by:

Brendan McMahon, Ph.D. Director, Chemical Services

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
PROJECT NAME:	Green Mtn. Race Track	MAV REF.#:	10,227
REPORT DATE:	December 13, 1994	STATION:	Trip
DATE SAMPLED:	November 22, 1994	TIME SAMPLED:	05:30
DATE RECEIVED:	November 22, 1994	SAMPLER:	James Robideau
ANALYSIS DATE:	December 5, 1994	SAMPLE TYPE:	Water

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
_	Benzene	1	BPQL
-	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
-	Xylenes	3	BPQL
-	MTBE	5	BPQL
	1		

Surrogate % Recovery: 100%

- HOOLR APPROLD C -----

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
PROJECT NAME:	Green Mtn. Race Track	MAV REF.#:	10,227
REPORT DATE:	December 13, 1994	STATION:	Green Mtn. Race Track Well
DATE SAMPLED:	November 22, 1994	TIME SAMPLED:	09:10
DATE RECEIVED:	November 22, 1994	SAMPLER:	James Robideau
ANALYSIS DATE:	December 6, 1994	SAMPLE TYPE:	Water

~	PARAMETER	PQL (µg/L)	Conc. (µg/L)
-	Benzene	1	BPQL
_	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
	Xylenes	3	BPQL
	MTBE	5	BPQL

Surrogate % Recovery: 100%

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
PROJECT NAME:	Green Mtn. Race Track	MAV REF.#:	10,227
REPORT DATE:	December 13, 1994	STATION:	MW-1
DATE SAMPLED:	November 22, 1994	TIME SAMPLED:	10:25
DATE RECEIVED:	November 22, 1994	SAMPLER:	James Robideau
ANALYSIS DATE:	December 6, 1994	SAMPLE TYPE:	Water

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
-	Benzene	1	BPQL
-	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
	Xylenes	3	BPQL
	MTBE	5	BPQL
	1	j –	

Surrogate % Recovery: 101%

BPQL = Below Practical Quantitation Limit (PQL)

all the source and the second

MicroAssays of Vermont, Inc. P.O. Box 189 Middlesex, Vermont 05602 (802) 223-1468 FAX 223-8688

<u>GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE</u>

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
PROJECT NAME:	Green Mtn. Race Track	MAV REF.#:	10,227
REPORT DATE:	December 13, 1994	STATION:	MW-2
DATE SAMPLED:	November 22, 1994	TIME SAMPLED:	11:40
DATE RECEIVED:	November 22, 1994	SAMPLER:	James Robideau
ANALYSIS DATE:	December 6, 1994	SAMPLE TYPE:	Water

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
<u>-</u>	Benzene	1	BPQL
	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
-	Xylenes	3	BPQL
	MTBE	5	BPQL

Surrogate % Recovery: 100%

BPQL = Below Practical Quantitation Limit (PQL)

MicroAssays of Vermont, Inc. P.O. Box 189 Middlesex, Vermont 05602 (802) 223-1468 FAX 223-8688

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
PROJECT NAME:	Green Mtn. Race Track	MAV REF.#:	10,227
REPORT DATE:	December 13, 1994	STATION:	MW-3
DATE SAMPLED:	November 22, 1994	TIME SAMPLED:	11:30
DATE RECEIVED:	November 22, 1994	SAMPLER:	James Robideau
ANALYSIS DATE:	December 6, 1994	SAMPLE TYPE:	Water

	PARAMETER	PQL (µg/L)	Conc. (µg/L)
1	Benzene	1	BPQL
	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
	Xylenes	3	BPQL
	MTBE	5	BPQL
	1	J	l

Surrogate % Recovery: 100%

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
PROJECT NAME:	Green Mtn. Race Track	MAV REF.#:	10,227
REPORT DATE:	December 13, 1994	STATION:	MW-4
DATE SAMPLED:	November 22, 1994	TIME SAMPLED:	10:47
DATE RECEIVED:	November 22, 1994	SAMPLER:	James Robideau
ANALYSIS DATE:	December 6, 1994	SAMPLE TYPE:	Water

	PARAMETER	PQL (µg/L)	Conc. (µg/L)
-	Benzene	1	BPQL
	Toluene	1	BPQL
	Ethylbenzene	1	BPQL
	Xylenes	3	BPQL
	MTBE	5	BPQL
			İ

Surrogate % Recovery: 101%

BPQL = Below Practical Quantitation Limit (PQL)

.`

3 ...

Construction of the second second second second second second second second second second second second second

1. 5. 1.

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
PROJECT NAME:	Green Mtn. Race Track	MAV REF.#:	10,227
REPORT DATE:	December 13, 1994	STATION:	MW-5
DATE SAMPLED:	November 22, 1994	TIME SAMPLED:	11:00
DATE RECEIVED:	November 22, 1994	SAMPLER:	James Robideau
ANALYSIS DATE:	December 6, 1994	SAMPLE TYPE:	Water

PARAMETER	PQL (µg/L)	Conc. (µg/L)
Benzene	1	BPQL
Toluene	1	BPQL
Ethylbenzene	1	BPQL
Xylenes	3	BPQL
MTBE	5	BPQL
	1	ł

Surrogate % Recovery: 101%

BPQL = Below Practical Quantitation Limit (PQL)

MicroAssays of Vermont, Inc. P.O. Box 189 Middlesex, Vermont 05602 (802) 223-1468 FAX 223-8688

GC/MS METHOD - BTEX (BENZENE, TOLUENE, ETHYLBENZENE, XYLENES) + MTBE

CLIENT NAME:	Lincoln Applied Geology	PROJECT CODE:	not given
PROJECT NAME:	Green Mtn. Race Track	MAV REF.#:	10,227
REPORT DATE:	December 13, 1994	STATION:	MW-6
DATE SAMPLED:	November 22, 1994	TIME SAMPLED:	11:21
DATE RECEIVED:	November 22, 1994	SAMPLER:	James Robideau
ANALYSIS DATE:	December 6, 1994	SAMPLE TYPE:	Water

-	PARAMETER	PQL (µg/L)	Conc. (µg/L)
_	Benzene	1	BPQL
	Toluene	1	BPQL
_	Ethylbenzene	1	BPQL
~	Xylenes	3	BPQL
-	MTBE	5	BPQL

Surrogate % Recovery: 100%

- 3

		L of L	MAV #		10227				REMARKS:												······································		Date/Time		7
				· · · · ·		`																	Received by:		
UV HECOHU			 			- UI		72			1			- / -	7		1						Relinquished by:		
CHAIN OF CUSIC		19) () () () () () () () () () (21-11/70 Selv 2	Trach		YW		# of pres Sample cont. ervd Type	2 1ten 402."4	Z Her yomin	Z HCL 4010.14	2 14ch 40 mill	2 146 40mile	Z Hee younit	2 Her yonnil	Z. Her youn'l						Date/Time	122494 3:15	
	Assays of Vermo	: Box 5210 P.O. Box 189 ontpelier, VT 05602 23-1468 Fax (802)223-8686	Lu APDLICA Loo	130x 710 RV:57	** MTH RACE		13:22 2 2000	JAM= 5 12	Date Time	11-22-94 5:3044	11- 22.94 9:10 Am	11-22.94 10:2504	11-22-94 10:47	11-22-94 11:00	11-22-44 11:21	11-22-94 11:30	= h 111 hb-22-11	11-22-94 10 213	1 1000				Received by:	& allard	
	Micro.	на М Рh. (802)2	CLIENT NAME	ADDRESS R. 01	PROJECT NAME	PROJECT NUMBER	PROJECT MANAGER	SAMPLER	Sample Location	- Trip OF NO	Freen MTH RAG THOSH WON	MW-1 OK ND	MW- 4 OK NO.	an to S white	MU- 6 01- NP	M.W. 3 OV NO	MW- 2 OF NO	TOW-1 Dry					Relinquished by:	Currence Reder	

Appendix C

November 1994

Pump Test Water Level and Flow Rate Data

						. A (ດປ	IFEF	R TI	EST	DA	ATA		ł	WELL C PAGE	OR HQLE <u>GM</u>	RTWell
nd - LAG		20 20 00	MP ON MP OFF RATION	DATE // DATE // OF AQUIE	15/94 22/94 ER TEST	іме <u>10</u> іме <u>04</u> т <u>7</u>	50 127 lays	HOW W. DISTAN MEASUF ELEVAT	LL'S MEAS CE FROM RING POIN ION MEAS	URED SI	WELL_ WELL_ DC INT_99	0' 78'	HOW Q MEASURED <u>Black lites at Ho</u> DEPTH OF PUMP/AIRPIPE				
orla	2		۲	IME	1=	AT	t' • 0	WATE		L DATA	SWL 1	3.85'	DISC	HARGE	Сомм	COMMENTS	
L BILL N	RECORDED	DATE	CLOCK	- CLAPSCO	- RECOVERT ELAPSED TIME			READING feet below TOC	CORAECTION OR CONVEASION	WATER LEVEL	W.L. CHANGE		reading Pitot (psi.)	RATE GPHULLPS			
AN A	┢	11/15	0830	}				13.85	· · ·		0	f	·	0	1		
RSO			1040					13.85			0	1		0	1	Pump Starte	d@1050
96 24	Γ		1105	15				39.45	····		25.60	[10	531			
			1107	17				39.62	:		25.77				-		
			1109	19				39.76			25.91				1		· · · ·
			////	21				39.90			26.05						-
		- <u>-</u>	1113	23				40.01			26.16	[]					
			1115	25				40.10			26.25		8	475		Adjust Flo	nu
			1127	37				35.77			21.92						
1.	\square		1129	39		.		36.05			22.20		-				
ent of	\square		1131	41				36.25			22.40						
ξ		1.	1133	43				36.37			22.52					Adjust Flow	v
ع ا		1	1208	78				37.90			24.05		10	531	-	Wasample	€ 1256
<[-	·		1338	168				38.89			25.04						
8		Y	1606	316				39.70			25.85	· · ·	10	531	[
3		11/15	2000	550	1	[39.26			25.41				·	1	
Ž		11/16	0817	1287				39.61			25.76		10	531			
			1200	1.510				39.69			25.84		10	531	· ·	· .	
		1/16	1403	1.633			· .	39.80			25.95		10	531			
5 E		ulra	0820	2730				40.17			26.37		10	531	i		
- AS	-	1	1212	2.962	<u> </u>		†.	40.26			26.41		10	531		· · · · · · · · · · · · · · · · · · ·	
Ĭ		117	1610	3200				40.32		·	26.47		10	631	— <u> </u>	<u> </u>	
ľ		1/18	0836	4186				40.64			26,79	†	10	531		 	
ľ	-†	1	0923	4.233		┈╸┤		40.64			26.79		8	475		Adjust Fla	
ł	-		1031	4301				41.77			27.92		9	504	÷	INO Sample	2 1020
ľ		+1	318	4.468				41.83			7.98		9	504	-t	1.00	
ſ	T)	1/18	1605	4,635			1	41.87			28.02		9	504			
} [-1	1/19	08/8	5,608				42.15			28.30		9	504			
- [Ţ	i l	202	5,832			- 1	42.22			28.37	 [-	9.	504			
2 [1	119	607	6,077			4	12.2.7		12	28.42		9	504			
2	_//	120	1823	7,053			4	42.50		2	8.65		9	504	<u></u>		
٤ſ	T	4	1158	7,268			4	42.53			28.68		9	504			· · · · ·
3	/	1/20	608	7,518			4	42.58		12	8.73		9	504			
§ [1	121	2821	8,491			4	42.77		2	8.92		9	504			
ĩ [T		1140	8,690	•	1	4	12.80		2	8,95					WQ Sample@	1140
5 [T		1610	8,960			4	42.81		2	8.96		9	504			
<u>يَّ</u> [T		1848	9,958			4	12.88		12	9.03						
ץ י	-	121	1925	9,995				42.88			9.03		9	504		Pump Off @	<u>0927</u>
	╉	{															
JIECT			·														
1.1			1	1	1	1	1	1		4	·	1					

-					_ A		ILL	- <u>-</u>	E3.			· · · · · · · · · · · · · · · · · · ·	f	,4GE	OF1				
	PU PU DU	IMP ON IMP OFF RATION	DATE DATE OF AQUI	11/15/94 1 <u>/22/9</u> 4 FER TES	гіме <u>/</u> гіме <u>/</u> іт <u>7</u>	1050 0927 Lays	HOW V DISTAN MEASU ELEVA	CE FROM	SURED PUMPIN IT SURING P	IG WELL 2 TOC	1.L. prob 2,122' 5.52'	HOW O DEPTH TYPE O PREVIO	HOW Q MEASURED <u>Pollard Pitot at Hose</u> DEPTH OF PUMP/AIRPIPE TYPE OF TEST_ <u>Constant Q ~ 500 gpr</u> PREVIOUS PUMPING						
2		 1	IME	t+	A'	r 1'•0	WATE	R LEVE	L DATA	SWL 1	2.78'	DISC	ARGE	COMMENTS					
ECOROED 1	DATE	CLOC: TIME	PUMPING CLAPSED TIVE	ACCOVENT CLAPSCO TIME			reading Feet helow	IRECTION OR VERSION	WATER LEVEL	W.L. CHANGI	E	READING	RATE (GPLO(LPS	, , ,					
l a	 	 	1	1	1		Toc	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	ļ. <u>.</u>	5		· · · · ·		<u> </u>					
	11/15	1018	0	<u> </u>	<u> </u>		12.78	 	 .	0	<u> </u>			┟	GMRT PUMP				
╞	<u> ↓</u>	1216	86	<u> </u>	┟~~	- 	12.78	<u>}. </u>	ļ	0	<u> </u>			<u> </u>	Started @ 10				
-	11/15	1615	325	ļ		-{	12.79	┟ <u></u>		0.01	-{	<u> </u>	_ .	<u> </u>					
	11/16	083	1307	 	ļ	<u> </u>	12.78	 		0	<u> </u>	 		<u>}.</u>					
	<u>+</u>	1215	1525	[<u>+</u>	12.79	· ·		0.01				[
	11/16	16-20	1110	<u> </u>	<u> </u>		12.17			0.01	·				 				
	117	0835	2749		·		12.17			0.01	-{	├ 		 -	-{				
_	¥ 	1219	2764		ļ	╂	12.17			0.01		<u> </u>							
_	<i>[]]]7</i>	1617	3207		·· _		12.17			0.01	-{								
	1/18	0850	4200				12.79		<u>_</u>	0.01	·}								
		1005	4215			<u> </u>	12, 19			0.01		<u>}</u>							
	<u>_</u>	1050	4320				12.79			0.01	<u></u>								
	¥	1320	4470			┟───┤	12.77			0.01	<u> </u>	· /		<u> </u>	<u> </u>				
_	///18	1615	4645				12.79			0.01	 								
	11/19	0826	5616			├ ₋	12.79		·	0.01	<u> </u>								
	*	1222	5852		····		12.79		. <u> </u>	0.01	[
_	11/19	1620	6090		·	-	12.79			0.01	<u> </u>				ļ				
	11/20	<u>0834</u>	7064				12.79			0.01	ļ								
	1	1206	7276			·	12.79			0.01	<u> </u>				· ·				
	11/20	1620	7530				12:79			0.01			[_	<u> </u>				
	11/2.1	<u>0833</u>	8503				12.79		;	0.01			·						
	11/21	1621	8971				12.79			0.01	[]		·		<u></u>				
_	1/22	0857	9967				12.80	·		0.02					GMRT PUMP				
						<u> </u>				[0ff@ 0927				
								· ·	<u>.</u>										
	[{									·				
Ĺ		[-				
							<u> </u>												
1	[
														_					
									[·						
\downarrow											[
1]	· _						
Ļ				·							·	<u> </u>							
1								~ <u></u>							<u> </u>				
1		·					<u>·</u>		{	[
⊥											<u>·</u>								
1															· · · · · · · · · · · · · · · · · · ·				
1											·	<u> </u>	ŀ						
			1		- 1	1	{												

WELL OR HOLE MW-5

76

						A	QU.	IFE	ЗT	EST	D/	ATA		ľ	WELL (PAGE	DR HOLE_	<u>MW-6</u>		
- <i>L</i> AG	! [PL PL DL	JMP ON JMP OFF IRATION	DATE /	1/15/94 T 1/22/94 FER TEST	іме _/с іме _0 г_7d	150 727 up	HOW W DISTAN MEASU	ICE FRON	SUREDS	nliast W. s well 2 TOC	L. Pobe 334	HOW O OEPTH TYPE O	HOW Q MEASURED <u>Polland Pitot at Hose</u> DEPTH OF PUMP/AIRPIPE TYPE OF TEST <u>Constant</u> Q ~ 500 gpm					
puz				 IMF	<u>-</u>		<u>, , , , , , , , , , , , , , , , , , , </u>	WATE		SURING P		1.90				MMENTS			
Vorie		DAT		23	120	<u></u>	<u></u>	READING	8 8	WATER	¥.L.	<u></u>	READING	RATE	1	- ~~	inment 3		
Bill	RECORD		TINE	- CLAPS	TINC			feet below TOC	CORRECTI CORRECTI OR CONVERSI	LEVEL	CHANGE			GPHULLPS	a .				
1		11/19	1021	0				11,90	· · ·	-	0		<u> </u>		1	GMRT	Pump		
		4	1219	89				11.91	[0.01					Starteo	18 1050		
1 0	-1-	11/15	1620	330				11.92			0.02								
		11/16	0832	1,302				11.90		<u> </u>	0								
			1217	1,527				11.90		<u> </u>	0				<u> </u>		--		
		11/16	1624	1,774				11.90		 	0				ļ		· · · · ·		
		11/17	0840	2,750				11.92_		<u> </u>	0.02	· i			┟				
		4	1222	2,972				11.92			0.02	_				- 			
	L	11/17	1621	3,211				11.92			0.02				<u> </u>				
L		11/18	0854	4,204				.11.92		·[0.02	<u> </u>			Í				
a.	L_	4-	1007	4,277				11.92		ł	0.02				 				
Š	ļ.		1054	<u>4324</u>				11.92		<u> </u>	0.02				 				
Z		¥.	1330	4,480				11.92			0.02	<u> </u>				<u> </u>			
~	ŀ	11/18	1618	4648				11.92		ļ	0.02	<u> </u>			<u> </u>	<u> </u>			
ğ	 	"] <u> </u> 9	0831	5,621				11.92			0.02					.	- <u></u>		
in in		¥	1226	5,856			!	11.92		<u> </u>	0.02	┣───┦				<u>-</u>			
Ø		11/19	1624	6,094	··	<u> </u>		11.92		[0.02	<u> </u>			 	<u> </u>			
		11/20	0840	7,070				11.92		h	0.02]			· · · · · · · · · · · · · · · · · · ·	<u> </u>			
z		4	1210	7,280				11.92		 	0.02	┣ᢤ							
ATIC		11/20	1624	7534				11.92			0.02	-							
roc		<u> 21</u>	0837	8,507				11.93			0.02	<u>├</u>							
		[2]	1624	<u>8,974</u>		·}		11.93			0.02			·		[
		11/21_	0900	<u>1970</u>	↓			11.93			0.02	<u> </u>				GMRT	PUMP		
								{		·	 	<u> </u>				Off@	0927_		
	┝╌╏									<u> </u>						 	<u>-</u>		
	┝╌╢						+	ł				┝━━━━┼╸				 			
X			·			<u> </u>					•								
ľá.	\vdash								··			——							
2			<u>-</u> +					<u> </u> -	{			—— <u> </u>				<u> </u>	·		
ac.					·			·			···								
R	┝╍╉							ł			.	·				<u></u>			
.5	-+			·	~		—— <u>†</u> -						— <u>—</u>	~	- <u> </u>	<u> </u>	<u> </u>		
Ę	┝╋										——†					· · ·	- <u></u>		
100	-+		<u> </u>									. 	·						
М]				†								·			· · · · · · ·		
5			†			—-†	f*	· [· — … —			
ě																			
U																			
k -						•						<u>├</u> ────				· · · · ·			
JECT	\Box							}				┝╾╌━╌┨╴							
တ်မှု			[ł		1							({		1			

						. Α	QU	IFE	З Т	EST	D	ΑΤΑ		۱ ۲	WELL (R HOLE.	TPW-1		
	1-140	PU PU DU	MP ON MP OFF RATION	DATE DATE	1/15/94 1/22/94 1/22/94 FER TES	ике <u>И</u> име <u>И</u> т. 7 е	050 127 laus	HOW N DISTAL MEASL	V.L.' HE	LSURED	olinst u g well_ TOC	1.L. Probe 510	HOW O DEPTH TYPE O	HOW O MEASURED <u>Bland Pitot at Hose</u> DEPTH OF PUMP/AIRPIPE TYPE OF TEST <u>COnstant Q ~ 500 gpm</u> PREVIOUS PUMPING					
0	2					· · <u> </u>	7	ELEVA	TION MEA	SURING P	OINT2	8.55	PREVIO						
	2 2		۲ مر			та Т	T	WATE	RLEVE	EL DATA		12.89	DISCI		DATA		MMENTS		
1 1 1 1 1 1 1			TIME		- CLAPSC			feet below TOC	COAACCT10	LEYEL	CHANGE		READING	GPHILPS) 				
	NN NN	11/15	1027	0	┟╺┷╴		<u>† </u>	12.89	 	1	0				<u> </u>	GMR	F PUMP		
-	SS[11/15	1610	190				12.90		·	0.01					Starter	1@ 1050		
	۳۲	11/16	0828	1,298		 	<u> </u>	12.99			0.10	<u> </u>			<u> </u>				
		+	1207	1,517			<u></u>	13.00	<u> </u>		0.11	·	ļ	_	<u></u>				
-		11/16	1608	1,628			ĺ	13.02	[0.13	<u> </u>	ļ		ļ		_		
		11/17	0828	2,738			ļ	13.14			0.25	ļ	<u></u>	. -	ļ		<u>.</u>		
		<u> + </u>	1215	2,965				13.16	Í	Í	0.27	<u> </u>			ļ	<u> </u>			
-		11/17	1614	3,074			!	13.19	ļ	ļ	0.30	<u> </u>	[<u> </u>	· 			
		11/18	0845	4,195				13.30			0.41		[]	· · · · · · · · · · · · · · · · · · ·		<u> </u>			
Ł			1007	4,277				13.31	Į		0.42					ļ			
Š		*	1323	4,473				13.32		<u> </u>	0.43				[·			
W	Ŀ	11/18	1609	4,509				13.33			0.44	<u> </u>				<u>}</u>			
Ì	Ļ	11/19	<u>0822</u>	5,612				13.42			0.53	ļ			<u> </u>	ļ			
~	Ľ	¥	1206	5,836				13.44			0.55	<u> </u>			··	ļ			
ng l		11/19	1612	5,952				13.46		ļ	0.57					<u> </u>			
in in	Ĺ	11/20	0830	7,060				13.52	 	}	0.63	ļ]				<u> </u>			
æ	L.	+	1202	7,272				13.53		<u> </u>	0.64	<u> </u>							
	_	11/20	1614	7,394				13.55			0.66					. 	<u>.</u>		
	<u>z</u>	11/21	0829	8,499				13.62			0.73					· · ·			
		¥	1203	8,713		(DRY	(13.65)		DRY	(70.76)				 	<u> </u>		
		11/21	1614	8,834				DRY	(13.65)		DRY	(70.76)				·			
-		11/22	0920	9,990				DRY	(13.65)		DRY	(>0.76)		·		GMRT	rump		
											·					off@	0927		
							<u> </u>			- <u></u>				_ [
												·							
																	·		
	Ц]											
act																- 			
76			·					·											
6	Ц															·			
ğ	-															•			
X		·ļ.									· 			·					
a'r			{		— <u> </u> -		{"										<u> </u>		
t t	\square									<u> </u>		 -		<u> </u>			•		
100	\mathbb{H}			<u> </u>	i-{	{									{				
d'	┣-┥		<u></u> +											<u></u>		÷			
3	H	+							<u> </u>				<u> </u>	<u>-</u>			<u> </u>		
ເລັ້	H	<u> </u> -				→ †]										
0		- ·	 		_ 	 +			_ }						{	· · · ·			
Ļ	;┟╌┤			<u>-</u>				}			j		<u> </u>						
0 0		{				†													

Appendix D

October & November 1994 Precipitation Data

Pownal 1 NE Station
Northeast REGIONAL CLIMATE Center

1123 Bradfield Hall Cornell University Ithaca, NY 14853-1901

Phone: (607) 255-1751 Fax: (607) 255-2106

Internet mail: nrcc@cornell.edu

FOR APPEND 1

-7

Date: December 2, 1994

To: Bill Norland Lincoln Applied Geology RD 1 Box 710 Bristol, VT 05443

Kathy Vreeland Karly Junland From:

The enclosed information is being sent in response to your recent request for climate data. A bill is enclosed to cover the cost of these data. Please return the bottom portion of the bill with your payment. If you have any questions or need additional data, you can contact our office at the address or phone numbers listed above.

.

DAY	ΜΑΧ	MTN	AVG	нрр	CDD	GDD	PREC	SNOW	DEPTH
1	57	35	46	19	0	0	0.00	0.0	0
2	49	35	42	23	0	0	0.19	0.0	Ō
3	53	30	42	23	0	0	0.00	0.0	0
4	54	31	43	22	0	0	0.00	0.0	0
5	51	39	45	20^{-1}	0	0	0.00	0.0	0
6	47	36	42	23	0	0	Tr	0.0	0
7	50	34	42	23	0	0	0.00	0.0	0
8	67	34	51	14	0	1	0.00	0.0	0
9	74	***S	* * *	* * *	* * *	* * *	****S	0.0	0
10	* * *	***S	* * *	* * *	* * *	* * *	****S	0.0	0
11	* * *	30	* * *	* * *	* * *	* * *	0.31A	0.0	0
12	50	26	38	27	0	0	0.00	0.0	0
13	59	26	43	22	0	0	0.00	0.0	0
14	64	30	47	18	0	0	0.00	0.0	0
15	56	32	44	21	0	0	0.00	0.0	0
16	57	28	43	22	0	0	0.00	0.0	0
17	57	30	44	21	0	0	0.00	0.0	0
18	61	32	47	18	0	0	0.00	0.0	0
19	62	36	49	16	0	0	0.02	0.0	0
20	64	47	56	9	0	6	0.06	0.0	0
21	64	49	57	8	0	7	0.26	0.0	0
22	61	46	54	11	0	4	Tr	0.0	0
23	62	39	51	14	0	1	0,00	0.0	0
24	62	39	51	14	0	1	0.03	0.0	0
25	62	41	52	13	0	2	0.00	0.0	0
26	58	31	45	20	0	0	Tr	0.0	0
27	51	31	41	24	0	0	0.00	0.0	0
28	51	32	42	23	0	0	0.00	0.0	0
29	58	33	46	19	0	0	0.00	0.0	0
30	62	41	52	13	0	2	0.00	0.0	0
31	65	45	55	10	0	5	0.00	0.0	0
SUM	1688	1018		510	0	29	0.87	0.0	
AVG	58.2	35.1	46.7						

81

DAY	MAX	MIN	AVG	HDD	CDD	GDD	PREC	SNOW	DEPTH	
1	61	47	54	11	0	4	0.10	0.0	0	Prelim
2	64	39	52	13	0	2	0.14	0.0	0	Prelim
3	42	31	37	28	0	0	0.25	Tr	0	Prelim
4	58	31	45	20	0	0	0.00	0.0	0	Prelim
5	76	48	62	3	0	12	0.00	0.0	0	Prelim
6	74	48	61	4	0	11	Tr	0.0	Û	Prelim
7	62	38	50	15	0	0	0.16	0.0	0	Prelim
8	50	35	43	22	0	0	0.00	0.0	0	Prelim
9	61	41	51	14	0	1	0.00	0.0	0	Prelim
10	54	37	46	19	0	0	Tr	0.0	0	Prelim
11	46	27	37	28	0	0	0.00	0.0	0	Prelim
12	40	23	32	33	0	0	0.00	0.0	0	Prelim
13	50	23	37	28	0	0	0.00	0.0	0	Prelim
14	51	41	46	19	0	0	0.00	0.0	0	Prelim
15	58	45	52	13	0	2	0.00	0.0	0	Prelim
16	58	33	46	19	0	0	0.00	0.0	0	Prelim
17	44	28	36	29	0	0	0.00	0.0	0	Prelim
18	56	27	42	23	0	0	0.00	0.0	0	Prelim
19	55	44	50	15	0	0	0.02	0.0	0	Prelim
20	51	33	42	23	0	0	0.00	0.0	0	Prelim
21	44	28	36	29	0	0	0.00	0.0	0	Prelim
22	* * *	* * *	* * *	* * *	* * *	* * *	****	* * * *	* * *	
23	46	28	37	28	0	0	0.00	0.0	0	Prelim
24	32	11	22	43	0	0	0.04	1.0	1	Prelim
25	37	11	24	41	0	0	0.00	0.0	Tr	Prelim
26	43	27	35	30	0	0	0.00	0.0	0	Prelim
27	35	10	23	42	0	0	0.00	0.0	0	Prelim
28	34	10	22	43	0	0	0.47	1.0	Tr	Prelim
29	57	33	45	20	0	0	0.52	0.0	0	Prelim
30	48	27	38	27	0	0	0.00	0.0	0	Prelim
SUM	1487	904		682	0	32	1.70	2.0		
AVG	51.3	31.2	41.2							

THESE DATA ARE PROVIDED BY THE NORTHEAST REGIONAL CLIMATE CENTER

Northeast Regional Climate Center Monthly Climate Data Reports

Each line on the printout contains climate data for one day. The columns of data are as follows: DAY day of the month

MAX maximum temperature (degrees Fahrenheit)	
MIN minimum temperature (degrees Fahrenheit)	
AVG average temperature (average of MAX and MIN)	
HDD heating degree days (base 65)	
CDD cooling degree days (base 65)	
GDD growing degree days (base 50)	
PREC precipitation total (rain and/or liquid equivalent of snow - inches)
SNOW daily snowfall (inches)	
DEPTH depth of snow on the ground at the time of observation	

Special values:

T,		•	indicates a "trace" (less than 0.01 inch of PREC; less than 0.1 inch of SNOW;
			less than 1 inch for DEPTH)
***	•		indicates missing data

All data for this location cover the 24 hour period ending at $\underline{7}$ $\underline{7}$ $\underline{8}$ $\underline{7}$ on the date indicated.

Appendix E

May 1962 Pump Test Water Level Flow Rate Data

	Kan						 		84
1 MY 3.1 1962	N1.14114	\-+++-+	19 C 2 2	OLA WELL No.					
	ر ب د مر		5 8 8 F	NG 07* MERNO		11- 11-	· · · · · · · · · · · · · · · · · · ·		
	0 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	2	- 8	6-6-5 1.0 2-1/1 1.2 2-1/2 1.2		2-3, /3- -3, /3- -3, /3- -5, /3- -5, /3- -5, /3- -5, /3-	
	D L AN O LW	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000' ->	2 "	6:32.9	1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
	NG 70 N	+ VHO	chs #10	<i>A. 6.</i>	х а́ о́	T INDER &			
LOG OF J	BENN	~		m Top of Coning DIAM	Hug Head-In Tel Inches	590/#			
				-Magaurements Fro t WELL No.	Guage Correpord ding Water Ler Static				
L C	P.L. # 1		Mall.	BEADINGS-	G. P. M. Alt. Res 5ado	446 446 446	445 445 446 446	5HH 5HH 5HH 7H2	
R. E. CH	Street		Backed	WYNG	Head-In Inches	Z /3. /3. /3.	/8/ /8: /8:	α, ,, εγ/ ,, εγ/	
	undians ,	ll Furb	. Alacel	-on T	Corresponding Water Level	2. 2.0-0.	10=01 10=0-	1.0-077	
	a Conel	Derige)	d 2.4" X 18 [0] Add To Beadin 1 gauge 5"0 ¹ PL	LARCE WEI	Tound Alt. Guarde	2.2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10-01 01-0 - 01 0 01 0 01	•
	Vi Matte	21 - 6e2 201 Jane Jump Data Pump 5''' e -Discharge Line J	Well being pumper Well being pumper in. (Do N		Top of Pipe Above Gr C	- 6.7 11:301 1911 12:401 11:40 P: 11:40 P:	1001 01 00 00 00 00 00 00 00 00 00 00 00	1. 10.00 1. 1. 10.00 1. 10.00	
	usiomer S contion: 77 	Perator ME	ze Orlice By za Orlice secription of ' angth Duriter ingth of Alt i	MELL	Elevation Date, Weath Samples 2	5-21- Xean e l	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2	: · ·

.

		I <u></u>					, _ ,	·		T			,		<u> </u>	<u> </u>									r	- 1			,,			(=)	
	2001 10	Obs. Wall No.												-																			• • .
	Ĭ	be, Well No.																															÷ •
		be. Well No. , 10	11 - 10		13-34	12-34"	23:24	13:32"	"35-81	* * * * * * * *	1324"	13-35'	* 25 5 7 5 1	13-32"	13-33"	13- 4"	13-45"	13-42	13-42	13-45	13-45	13-55	12-42	13-45	1 2 2 2 2	1325"	13254"	<u>"خرز میر م</u> ر	<u>'خک- 2ر</u>	13-55	132521		· · · ·
		4. Well No. 7 0	0,00,0		19-57	19-54 	9-0-0	15-5	9-5-5	- 7-0	19-62	19-6-5"	12-5-2"	19-5-5'	10-5-2"	9-65"	9 - 2 "	12:2"	1,22-6,	1.3-25	19-22	19-75"	19-23"	,72-6	¢	1.24.50	9-73"	19:73"	19- 731	19-25	12-57] 	1
and and an array of the second second second second second second second second second second second second se		Well No. / Ot		2	, 9	1			1				l		<u>י</u> ו				1		- 1				1		1]		1		
			G, P, M,		HERK NO	- 1		•																	1							_	•
	2	DIAM.	Hend-In Inches		#1 NAT																												
		DIS FIOD 100 0	rterponding																											-			•
	Sher	RGE WELL No.	lt. Guege Co Baading	tic Sta																													
			G. P. M.	Sta	445-	440-	2465	445-	445	44.5-	445	440	2 2 6 -	14.5	1431	-2/1	445-	445-	- 5/4/4	445-	445	445-	445-	44.5	-244	445	445	446-	446	-217.17	445		
		DIAK.	Head-In		. 3 " - 7	13"	., 5,	13 ''		ري . ال	13"	/3"	13" -	13" 4	13" -	13"	13"	13"	73 ''	<u>ر</u> ع"	/3"	/3"	13 "	13 "	18.	/3	13"	.,81	134	13"	/3"		
			responding	tte 2 - 3"	· 0;-0;-	1020-	"o-o/	10-01	10-0 ×		40-0"	40 ÷ 0 *	40:0"	#070H	~0 <u>-</u> 0%	40-6+	"1-0K	40-C"	, 9 , 07	. 7-06	40-6"	410-16"		40-6"	40-6"	40-6"	H6:6"	40 %	-0 1 , "9-0 1	- 9=0H	-70-7		
		RGE WELL No.	the Guage Con Reading	11 (-3" 81	10-0	40-0- 4	40-0- V	10-0- 2	14:0: 1	10-0-	10:00	10:00		10:01	10707	10-6"	7- 07			40-6" -		10:0%	10-11	40-6"	40-6	20-2-	40-5	"." "- oH	1.7=0H	-7-0H	4026"		
			were Ground A	Time	1:00P.m. 5	7:00	20 A. 22.	46 B. 222	20 B. m. 4	00 8.22.	00 1.20.	40 B.20 4	40 B. m. 1	00 P. m. 5	20 B. 20. 4	100 - 20 - 2	:00 B.m.	1.00 Noon	30 P.m. 4	00 8211-	00 820. 4	00 8.200	10 P. m.	100 PM.	20. m.	100 800.	00 Par.	2.00 Rm.	140 P.m.	2:00	00 P.m.		
			op of Pipe A	n n n n n n n n n n n n n n n n n n n	62 1		62 24	- 20	3.	4.	2	19	2	7	6	10	7	1	*	C	<u>.</u>	#	5	-	~		Ň	7	ľ	<u>v</u>	62 4		

ERV 3.1 T		Il No. Oba, Well No.											-								-									-	
		ta. Well No. 6 Obs. W.	11-11"		13-5 3	ک <u>چ</u> کک∸ چکر	13-51	2.5-5-	12-51	مقرمتر وم	" يچ ي نور	<u>, 5-5-6</u> /	" " 2" - E. L	"محيح من شوم الم			1,76:51	* * * * : 5,	10-8-	المقترض بحدثر	12-63"	18:0"	10101	13-94"	13-52	12-95"	13494	13-92:	13-9-61	13-10"	13-20"
		OPT MON NO. 0	1 - S - S		19-273"	19-23'	19-23"	19-51	19:8"	12-51	19:6	18-8	19-51	19:51			20-021	21-12"	~ ~ ~ / ×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	21-45"	* 2 5 - 20-	" 7 -12-	21-45	21:44 "	1 212 -12	"	21-42	1,2,7,5%	1.32-120	2125
		Obe. Well No.	28-9				1		 				*****			ta.			. <u> </u>										<u></u>		
			1 A 10		WORK										in Lam	20 6.0		-				-							 	-	
ny ¥	top of Casing	DIAM.	Read-In Inches		41 207										Alle	W.				-						-				 	
EET +	urements From	l No,	Corresponding Water Level	Biatic	1										Bink	d ste	2														
S.h.	ADINGS-Meas	LARCE WEL	Alt. Guage Reading	Static							-				dil in	at with					-										
	BE	18-	G. P. M.		446	-944	445	446	446-	-9114	145	445-	446	445	Check	t ma	520	520	520	520	520	5030	520	5-20	520	520	520	0720	520	520	520
		DIAM.	Read-In Inches		13"	" E/	7.3 "	., 87	12"	.,8/	. ور	/3"	" 2 1	, <i>5</i> /	Mind.	lina a	0,8-11	102	15"	15.	/ /	16.		.J.		18.		15-11	1°5"		15.
		No.	Gorrenponding Water Level	^{8tatle} 6-3'	40: - C "	40:6	-, 3 - 0/4	40-C"	40 - 6	40:07	40:04	40.5	40-04	40%	daim 1	6 de um	415-16 "	45-46	- <i>11</i>	46:0"	46-0"	H6:0"	· 0-74	- 0- 7A	26:0.	46-0"	, p- 7H	0 14	46-0-	41-0	46-0
		TTER ADAVI	Alt Guige Reading	Statte (- 3"	40:0	., 7:0H	40-6"	40-70 "	" 7: 0H	17:04	4026"	17-14	10:04	-7-0H	2 hut	2 to to	45-6"	45-16	46-0"	46-0	46-0"	46-0"	<i>7</i> /	HL-0"	116-0"	-7/-7/-	46-0	-7H	46-0		-715-0
			pe Above Ground	Time	2:00 B.m.	3:60 A.m.	H:00 A. The	5.00 8.2.	6 100 H. m.	7.400.20	8.00 8.3.	9:00 A.m.	10:00.3	11:00 8:20	11:10 8:4	11:20 8 2	12:00 1000	1:00 P. 2.	2.00 E. 20.	8.00 P. 201.	4.00 Pm.	5.00 .m.	6.00 . 200.	2.00 2.2	Kien F. Zu	9.00 8.200	70:00 Pm	11:00	12:00	1:00 11.70	2.00 B.A
		WELL	Elevation-Top of Pi	Date, Weather and Samples Taken	5-23-62							Ptote bornel	Low 10:301.20	mich Bacture																5-24-62	

A 17 8 1

<				1	Î								 _	<u> </u>	<u>, </u>	<u> </u>		[[]				<u> </u>				<u> </u>	_ <u></u>	 T([· .	,	8	37
	31 1967	No. Well No.							•																									
	ABLI	Woll No.																																
		I No. Obs	6:1		01 ;	. 07 -	- 10.	2023			112	19 "	. 2	- 4 -	: 7	، م	-4"		 	-											•			
		LON. We				e/ "	" /3	5/ 1	, '3	-	~ 12.	· / /2	12	21 12	17		1.12					<u>.</u>												
	•	Obs. Well No.	57.6		21-100	3-120	21-12	2-120	21-6		1 = 3	10-01	6-01	10-8	1648	1 1 1 1	10-2-					•												
		Mell No		2	1		} 1	-																							-		-	
			N K		+ ING																											. <i>.</i>		
	į	ol Costing	Head-In Inches		OT WON					taken	,								-				0	(, y)	10,00	29								
	₩ √		STGEDORGINE	ttle	*					Laines 1	Ì								 					H								· .	•	
	ShEET	RCE WELL No.	It. Ounge Randing	tle St						4 Rea									-								-						- -	
			. м.	5	20	20	30	20	20	Lear	1										-								-	 			•	
		·	0		رک ء	ر ح	, ,	5	5	2	1	۱ 							 															
		DIAN	Hend-In Inches		10/	18	15'	Je.	18	it de	3 												ļ								•		•	
			Carresponding Water 1 avel	Btatic 2 - 3 "	-74-0.	,, 0; 7/4	410"	46-0"	11:9-14	Cumer 1	11-0-11	122	Derech.				outel.	11														· .		
		LARGE WELL P	Alt. Quare Reading	Statle 2-3 "	46-20 "	1.0:7H	46-0"	0= 7H	46-0"	Shut ?	11-0"	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	stall				stilla							•										
			Abve Ground	Taa	3:00 9 3	H'00 B.m.	5.00 8.24	6:00 A.M.	7:00 A.M.	7.10 8 22	8.60 A.m.	2.011 B.m	10:00 8.20	11:00 8 20	12:00 NOON	1.40 A. 2m.	2.00 8.20																	•
		WELL	Elevation-Top of Pipe	Date, Woather and Samples Taken	5-24-62																										· · · · · · · · · · · · · · · · · · ·			

- La - 1

VIIB Computations

Project: Beaver Wood	Project #
Location: Paunal VT	Sheet of
Calculated by: MJP	Date: _10/5/2010
Checked by: LBS	Date:6/5/10
Title Well Yield Calcula	tions

1		5	0.01		. C.		1 0 10	, D	T	_
C	alculate	are	Treld	ot Exer	ting Urai	vel well a	t Uscen VII	th lace	1sack	
<u>ג</u>	se test	data	from	1994 Lin	coln Applie	ed Geology	Pump Tes	S		
	ct h	[- 17 851							
•	top o	f well s	cteen =	52' bas +	1.5' ca	sina = 53	·5' htc			
. ,	total	available	head =	53:5'-	13. 85' =	39.65'				
_A)<	Specific	Capacity	Method	based o	n_646-	data an	alysis	N		
•	180- 1	day proje	cted_drai	Jdown =	32 Ft	(LAG	eport chart	4)@514	gpm	
	50ec:C	in Coll	or: L. A	F well:	514 an	$m \div z_2 \varphi$	f = 1606	andf	¥.	
	Qura	лссија	and o	\U	- dr - Jr	/// - 00 1		Junit		
•	Safe	gield =	39.65'	TAH_	× 16.06	gem[ft =	637 gpm	- Cont	וווטטעג אי	the day
-						N		1.1:41	ndrawal	~ ~
	i i									1
~										
B	Cooper	- Jacob	Nonequi	librium	Method,	based on	VHB_analysis	es Lit	6 1994	-test d
B).	Cooper See	- Jacob Following	Nonequi 3 Pas	librium jesfor	Method, graphical	based on analysis	UHBanalysis andcalcol ut	of LA	10-1994	-test d
B).	Cooper See Sufe	- Jacob Following	Nonequi 3 Pag = 614 a	librium_ jes_for nm - 24	Method, graphical	based on analysis	UHBanalysis andcolcol.ut	igas	6- 1994	-test d
B).	Come see safe	- Jacob Ellowing gield =	Nonequi 3 Pas = <u>614 a</u>	librium_ jes_for <u>pm_</u> 24	Method, Graphical [_ht] dag	based on analysis withdrawa	UHBanalysis andcolcol.ut	igns		-test d
B).	Cooper See Safe	- Jacob Ellowing gield =	Nonequi 3 Pas = <u>614 a</u>	librium jes <u>pm</u> _24	Method, Graphical [_ht] dag	based on analysis withdrawa	UHBanalysis andcolcol.ut	igas	6 1994	-test d
в)	Cooper See Safe Averag	- Jacob Ellowing gield = e brete	Nonequi 3 Pas = <u>614 a</u> 1 From	librium jes for <u>pm -</u> 24 two r	Method, graphical [_ht] dag Nethods:	based on anelysis withdrawa (637 + 6	UHB_analysis and colcolus	625.5,	Found -	-test d to <u>626</u>
в)	Cooper See Safe Averag	- Jacob Ellowing gield = e brek	Nonequi 3 Pas = <u>614 a</u> 1 From	librium jes for <u>om -</u> 24 two r	Method, graphical [_ht] dag vethods:	based on anelysis withdrawa (637 + 6	UHB_analysis and colculus	0€ LA ions 625=5,	6 [994 Found -	-test_d to <u>_626</u>
в)	Cooper See Safe Averag	- Jacob Ellowing gield = e brek	Nonequi 3 Pas = <u>614 a</u> 1 From	librium jes for <u>om -</u> 24 two r	Method, graphical [_hr] dag vethods:	based on anelysis withdrawa (637+6	UHB_analysis and colculus 4)÷2=	б€ ЦА ioas 6.25.5,	6 [994 Found -	-test_d
в)	Cooper See Safe Averagi	- Jacob Ellowing gield = e brea	Nonequi 3_Pas = <u>614_a</u> 1_ 6 nom	librium jes for <u>pm -</u> 24 two r	Method, graphical [_hr] dag vethods:	based on anelysis withdrawa (637+6	UHB_analysis and_colculus	б€ ЦА ioas 6.25.5,	6 [994 Found -	-test_d
в)	Cooper See Sufe Averag	- Jacob Ellowing gield = e wield	Nonequi 3 Pas = <u>614 a</u> 1 From	librium_ jes_for <u>pm -</u> 24 two r	Method, graphical [_hr] dag Nethods:	based on anelysis withdrawa (637 + 6	UHB_analysis and_colculus	б€ ЦА ioas 6.25.5,	6 [994 Found	-test_d
в)	Cooper See Suffe Averag	- Jacob Ellowing gield = e wield	Nonequi 3 Pas = <u>614 a</u> 1 From	librium jes for <u>pm -</u> 24 two r	Method, graphical [_hr] dag Nethods:	based on anelysis withdrawa (637+6	UHB_analysis and_colculus 4)÷2=	от ЦА ioas 6.25.5,	Cound -	-test_d
ی ج ک	Cooper See Sufe Averagi	- Jacob Ellowing gield = e victo	Nonequi 3_Pas = <u>614_a</u> 1_ 6 nom	librium jes for <u>pm -</u> 24 two r	Method, graphical [_hr] day Nethods:	based on anelysis withdrawa (637+6	UHB_analysis and_colculus 	б€ ЦА ioas 6.25.5,	6 1994 Found	-test_d
B)	Cooper See Safe Averag	- Jacob Ellowing gield = e wrea	Nonequi 3 Pas = <u>614 a</u> 1 From	librium_ jes pm two	Method, graphical [_ht]dag Nethods:	based on anelysis withdrawa (637 + 6	UHB_analysis and colcolat	o€ LA ions 6.25.5,	6 [994 Found -	-test_d

.

GMRT Gravel Packed Well 1994 Pump Test Data (from Lincoln Applied Geology) Data Analysis by VHB, 2010

Date	Time	Elapsed Time (min)	Water Level (ft btp)	Drawdown (ft)	Discharge (gpm)	Cumulative gal	Notes
11/15/1994	8:30		13.85	0.00			background measurement
11/15/1994	10:40		13.85	0.00			background measurement
11/15/1994	10:50	0	13.85	0.00		0	Start Test
11/15/1994	11:05	15	39.45	25.60	531.0	7,965	
11/15/1994	11:07	17	39.62	25.77	531.0	9,027	
11/15/1994	11:09	19	39.76	25.91	531.0	10,089	
11/15/1994	11:11	21	39.90	26.05	531.0	11,151	
11/15/1994	11:13	23	40.01	26.16	531.0	12,213	
11/15/1994	11:15	25	40.10	26.25	475.0	13,163	decrease Q
11/15/1994	11:27	37	35.77	21.92	475.0	18,863	
11/15/1994	11:29	39	36.05	22.20	475.0	19,813	
11/15/1994	11:31	41	36.25	22.40	475.0	20,763	
11/15/1994	11:33	43	36.37	22.52	475.0	21,713	increased Q
11/15/1994	12:08	78	37.90	24.05	531.0	40,298	
11/15/1994	13:38	168	38.89	25.04	531.0	88,088	
11/15/1994	16:06	316	39.70	25.85	531.0	166,676	
11/15/1994	20:00	550	39.26	25.41	531.0	290,930	
11/16/1994	8:17	1,287	39.61	25.76	531.0	682,277	
11/16/1994	12:00	1,510	39.69	25.84	531.0	800,690	
11/16/1994	14:03	1,633	39.80	25.95	531.0	866,003	
11/17/1994	8:20	2,730	40.17	26.32	531.0	1,448,510	
11/17/1994	12:12	2,962	40.26	26.41	531.0	1,571,702	
11/17/1994	16:10	3,200	40.32	26.47	531.0	1,698,080	
11/18/1994	8:36	4,186	40.64	26.79	531.0	2,221,646	
11/18/1994	9:23	4,233	40.64	26.79	475.0	2,243,971	
11/18/1994	10:31	4,301	41.77	27.92	504.0	2,278,243	increased Q
11/18/1994	13:18	4,468	41.83	27.98	504.0	2,362,411	
11/18/1994	16:05	4,635	41.87	28.02	504.0	2,446,579	
11/19/1994	8:18	5,608	42.15	28.30	504.0	2,936,971	
11/19/1994	12:02	5,832	42.22	28.37	504.0	3,049,867	
11/19/1994	16:07	6,077	42.27	28.42	504.0	3,173,347	
11/20/1994	8:23	7,053	42.50	28.65	504.0	3,665,251	
11/20/1994	11:58	7,268	42.53	28.68	504.0	3,773,611	
11/20/1994	16:08	7,518	42.58	28.73	504.0	3,899,611	
11/21/1994	8:21	8,491	42.77	28.92	504.0	4,390,003	
11/21/1994	11:40	8,690	42.80	28.95	504.0	4,490,299	
11/21/1994	16:10	8,960	42.81	28.96	504.0	4,626,379	
11/22/1994	8:48	9,958	42.88	29.03	504.0	5,129,371	
11/22/1994	9:25	9,995	42.88	29.03	504.0	5,148,019	
				Ave. Q =	515.1	apm	

Alta Gardens Estates MHP (WSID 5628) Delineated Source Protection Area

Prepared By:

Agency of Natural Resources Department of Environmental Conservation Water Supply Division

April 2002

Alta Gardens Water System, WSID 5628 Draft

Purpose

The federal Safe Drinking Water Act requires all states to establish a Source Protection Area program. This federal requirement is supported by two State statutes, Public Water Supply and Groundwater Protection, Chapters 56 and 48 of Title 10 respectively. These state statutes require the adoption of rules for the protection of public water source protection areas. In turn, the rules establish a program containing procedures to determine the public water source protection area. The rule relevant to this goal are the Water Supply Rule.

The purpose of delineating a Source Protection Area (SPA) is to determine the recharge area which supplies water to a public water source. The recharge area or SPA for a groundwater source is defined by the nature of subsurface flow and that induced by pumping.

Within the SPA land uses and naturally occurring materials may render the public water source vulnerable to contamination. While naturally occurring contaminants are most often controlled through treatment, land uses are managed by a Source Protection Plan (SPP). A SPP is a document that in part identifies management techniques to control land uses within the SPA that may threaten the water source.

The SPA for the Alta Gardens Water System consisted of a three thousand foot radius surrounding the well source. This type of SPA gives little consideration to the hydrogeology or groundwater flow of the area. To delineate a more appropriate SPA for this water system existing information regarding the groundwater flow in the area was examined. This information included a review of existing geologic literature, the well completion reports within the area, an assessment of aerial photographs, orthophotos, and topographic maps. A field investigation was also conducted.

Location

The Alta Gardens Water System is located in the southern extremity of Pownal Village just west of the Hoosic River. It is located southwest of state route 7. The well serving the water system is on the southeast corner of the Mobile Home Park. Topographic features of the area are found on the United States Geological Survey's Pownal, VT. Quadrangle.

Geology

<u>Bedrock</u>

The water system is in the Taconic Mountains geomorphic region and along side the Hoosic River valley. The wells drilled to bedrock encounter a comparitively less resistant slate and phyllite with quartz. According to well completion reports (attached) the depth to bedrock varies from the surface to over 100 feet deep. However, all well locations within the area of the water system have not been field located and may be only considered approximate. The bedrock is highly metamorphosed, that is, pressure, temperature, and chemical processes were responsible for its development. Those wells with large yields in the area are probably highly fractured. Fracturing of the slate is highly probable.

Bedrock Types Nearby the Alta Gardens Water System

Surficial Geology

The unconsolidated sediments described in well completion reports are predominately sand with gravel and underlying clay. The thickness of these uncosolidated sediments range from 0ft. to 100 ft. The sand and gravel thicknesses is variable. Along the Hoosic River the valley floor is composed of silts and clay. Near Ladd Brook within the flood plain of the Hoosic River gravel deposits can be 30 ft. deep.

Of the 12 well completion reports referenced in the area 9 describe clay or harpan overlying bedrock. Similar to the sand, the clay can be quite thick. In one instance the clay is over 80 ft. thick but averages some 20 to 30 feet in thickness. Gravel deposits may underlie the clay and occurs directly over bedrock. Where clay is absent, the sand, gravel, or till overlies the bedrock below.

Well Number	Well Yield	Depth to Bedrock	Well Depth
1	1 GPM	26 FEET	500 FEET
14	3	12	155
15	2	4	245
16	.0	12	455
32	1	10	200
73	2	9	245
156	15	60	170
256	15	gravel & clay	117
282	30	99	200
318	2	10	502
324	30	75	100
349	15	60	125

SPA Delineation

The area defined by outer most boundary of the SPA is referred to as Zone III. Zone III is the area of recharge to the source where possible impacts from potential sources of contamination may occur. This area may also be thought of as the area supplying recharge to the public source simply by natural groundwater flow.

Groundwater flow generally mimics the lay of the land, therefore, the outer boundary of the SPA was based in part on the topography of the area. As expected, this common characteristic appears to be reflected in the static water level reported for the well at Alta Gardens and the water level within the Hoosic River. For instance, the Alta Garden's well is at a topographic

Surficial Geology Nearby the Alta Gardens Water System

	Legend
AL	Aluvium
Т	Till
STC	Silty Clay
LS	Lake Sand
K	Kame
KМ	Kame Moriane

elevation of about 580 ft. with a static water level of approximately 30 ft. below ground surface. The water level in the well is about 550 feet above sea level and the Hoosic River levels is estimated at 520 ft. Groundwater flow is therefore, from the well to the river.

Applying the above concept indicates that groundwater flow is topographically upgradient from the Alta Gardens's well. The height of land within the proposed SPA is1200 ft. as estimated from the topographic map. The well has an elevation of about 580 ft., as mentioned. A difference of 620 ft. between the well and the height of land was calculated. The distance between the height of land and the well is about 4000 ft. Dividing the difference in elevation between the two features by the distance between gives a hydraulic gradient of 0.16 or otherwise known as the slope of the groundwater.

The hydraulic conductivity of the aquifer is similar to permeability. It is the ability of the aquifer to transmit water to the well. There is no aquifer test for the Alta Garden's well which could provide site specific information. However, estimates for similar rock types provide a hydraulic conductivity of 1 squared ft./day. The well encounters a wide variety of sediments including sand, gravel, clay, and afterwards slate. It is estimated that the hydraulic conductivity represents this range of lithology or rock types. The well is 170 feet deep with 60 feet of well casing. This leaves 110 ft. of rock or slate exposed within the well.

The well pumps a maximum of 10800 gallons per day as reported by the operator of the water system. This amount translates to 1444 cubic feet of water per day. Given this discharge and combining the above parameters into the Uniform Flow equation, the width of the SPA can be calculated.

The Uniform Flow Equation is:

Y = Q/Kbi

Q/KDI wh

where: Y is the width of the SPA
Q is the maximum pumped from the well
K is the Hydraulic Conductivity
b is the exposed aquifer
i is the hydraulic gradient

or Y = 1444/(1)(110)(0.16) = 800 ft.

The above calculation defines the lateral extent of Zone III.

The inner boundary of the SPA defines an area referred to as Zone II. Zone II is an area where there will be probable impacts from potential source of contamination. This area may also be thought of as the recharge area which is impacted by the pumping of the well.

Zone II was calculated using the second portion of the Uniform Flow Equation. This equation also considers the pumping rate of a well, the hydraulic conductivity (permeability) of the geologic character of the area, and the slope or hydraulic gradient of the groundwater.

This second portion of the Uniform Flow Equation defines the downgradient affects of pumping

the well and can be calculated by:

$X = Q/2 \prod Kbi$

or X = 1444/(2) (\prod) (1) (110)(0.16) = 200 ft. where: \prod is pi

Another equation can be used to define the upgradient extent of Zone II. This equation is base on the velocity of groundwater flow. It uses the hydraulic gradient of the aquifer, the hydraulic conductivity, and the porosity of the aquifer. The porosity is defined as the amount of void space within aquifer and is used to estimate the amount of water within the aquifer. Porosity can be thought of as a percentage and is estimated as 0.1. In addition, the equation takes into account the life expectancy of bacteria which has been determined to be two years. This period is important since it represent the time bacteria would have to migrate with the groundwater to adversely impact the well. Bacteria associated with groundwater flow beyond this area would have died off causing no adverse impact. The equation is:

> V= Ki/p where: V is groundwater flow velocity p is porosity

V=1(0.16)/0.1 = 1.6ft./day

The velocity of the groundwater flow is1.6 ft./day. Within a two year period groundwater would have traveled about 1170 feet. The udgradient extent of Zone II is approximately 1170 feet which coincides with the aerial extent of the sand and gravel deposits found in the area.

The equation given above provide approximations of groundwater flow both natural and that induced from pumping. The calculations have been used in conjunction with the geology of the area to delineation the Source Protection Area for the Alta Gardens Water System in Pownal, Vt.

References:

or

David DeSimone and David Dethier, 1988. Surficial Geology of the Pownal and North Pownal 1:24,000 Quadrangles, Vermont

Pownal Quadrangle VT. USGS Topographic Map,1954

Well Completion Reports Nearby the Alta Gardens Water System

APPENDIX 4

Beaver Wood Energy Pownal, LLC. Hoosic River 7Q10 Analysis Based on USGS Station #0133250 (Hoosic River near Williamstown, MA)

USGS Flow Da	ta from Hoosic Riv	er near William	stown, MA Gauge
Water	Annual Low		Recurrance
Year	7-Day Q	Rank	Interval
(ending in Sept)	(cfs)		(years)
1980	25.4	1	71.0
1968	31.0	2	35.5
1964	33.6	3	23.7
1905	33.0	4	1/.0
1983	35.6	6	14.2
1963	39.3	7	10.1
1995	40.7	8	8.9
2002	41.0	9	7.9
1962	41.4	10	7.1
1999	43.1	11	6.5
1982	43.6	12	5.9
1984	44.7	13	5.5
1949	45.3	14	5.1
2005	45.4	15	4.7
1955	45.6	16	4.4
19/9	40.1	1/	4.2
1953	48.3	19	37
1956	48.3	20	3.6
1948	49.3	21	3.4
1969	49.3	22	3.2
1959	49.4	23	3.1
1958	50.1	24	3.0
1998	50.1	25	2.8
1957	50.3	26	2.7
1987	50.4	27	2.6
1997	50.9	28	2.5
1954	51.0	29	2.4
1993	51.9	31	2.4
2008	52.0	32	2.2
1990	52.3	33	2.2
2001	52.4	34	2.1
1996	52.9	35	2.0
1991	53.6	36	2.0
1960	54.3	37	1.9
1966	54.4	38	1.9
1992	55.3	39	1.8
1941	55.6	40	1.8
2007	56.0	41	1.7
1978	56.7	43	1.7
1994	56.9	44	1.6
1988	57.0	45	1.6
1940	57.4	46	1.5
1942	59.9	47	1.5
1974	62.0	48	1.5
1947	64.3	49	1.4
1950	04.7	50	1.4
1973	65.7	52	1.4
1943	66.1	53	1.3
1952	66.1	54	1.3
1970	66.9	55	1.3
1972	68.6	56	1.3
1951	69.6	57	1.2
2006	70.0	58	1.2
1946	70.3	59	1.2
2003	/2.1	60	1.2
1967	/4.U 81.2	10 62	1.2
1977	82.0	63	11
1976	83.6	64	11
2000	84.1	65	1.1
1945	87.1	66	1.1
1986	90.4	67	1.1
2009	99.6	68	1.0
2004	113.9	69	1.0
1975	151.0	70	1.0
7Q10	38.8	cfs, at USGS	Hoosic River gauge nea

cfs, at USGS Hoosic River gauge near Williamstown, MA (watershed area = 126 square miles) 7Q10 38.8

<u>NOTE:</u> "7Q10" is the drought flow equal to the **lowest average flow for 7 consecutive days** with a 10% chance of occurring in any year (that is, with a ten-year return period). It is the flow rate at which Vermont Water Quality Standards are applied.

Adjust the 7Q10 at the USGS gauge, to the watershed area at the project si	ite:	
Watershed area at USGS gauge:	126	square miles
Unitized 7Q10 :	0.31	csm (cfs per square mile of watershed)
Watershed area at project site:	211	sq.mi.
Ratio of watershed areas:	1.67	
Pro-rated 7Q10 at project site:	65.0	cfs (= 7Q10 at USGS gauge x Ratio)
de minimus at project site:	3.25	cfs (= 5% of prorated 7Q10 at project site)
or, de minimus at project site:	1,458	gallons per minute

Prepared by: MJS/LBS

Beaver Wood Energy Pownal, LLC.: Source Protection Plan NTNC Water System (WSID # 2585) - PSOC Inventory October 4, 2010

List of Potential Sources of Contaminations (PSOC)							
PSOC #	Description	Comments	Risk Level				
1	Green Mountain Race Track Underground Storage Tanks	 Removed November 10-11, 1993, no VOCs detected in groundwater water quality test, Owner: Progress Partners, Ltd., Site: Lovett Cemetery Rd. Pownal, VT 05261 	Low				
2	Green Mountain Race Track Historic Leachfield	 Non-operational, low nitrate levels detected in groundwater water quality test, Owner: Progress Partners, Ltd., Site: Lovett Cemetery Rd. Pownal, VT 05261 	Low				
3	Municipal Sewer Line	• Owner: Town of Pownal Site: Adjacent to Route 7 Pownal, VT 05261,	Low				
4	US Route 7	• Owner : Vermont AOT, Site : US Route 7 Pownal, VT 05261	Low				
5	Railroad	Owner: Pan Am Southern, LLC., Site: Boston & Maine Railroad Pownal, VT 05261	Low				
6	Green Mountain Race Track Stormwater Pond	 Non-operational, Owner: Progress Partners, Ltd., Site: Green Mountain Race Track 	Low				
7	Lovett Yard Cemetery	• Owner: Town of Pownal Site: Route 7 Pownal, VT 05261	Low				
8	Gravel Pit	 Gravel extraction completed above water table, Owner: Steven M. Hart Site: Route 7 Pownal, VT 05261 	Low				

Beaver Wood Energy Pownal LLC.

Groundwater Withdrawal Testing: Existing Gravel Well at the Green Mtn Race Track

All Known Wells and Monitoring Locations Within 3,000 Feet of the Project Well, and Within its Area of Influence

VHB 10/15/2010

Well ID	Parcel #	Site Address	Owner	Mailing A	Address			Well	Well	Well	Well Total	Static Level,	Hyd. Base [2]	TAH [3]	Den	nand	Yield	(GPM)	Distance, Ft
								Type[1]	Tag	Rpt#	Depth, Ft BGS	Ft BTC	Ft BGS	Feet	gpd	gpm	Driller's	Permit [4]	from BWE Well
Canto Well	7-9-31	1125 Northwest Hill Road	Louis Canto	1125 Northwest Hill Road	Pownal	VT	05261-9448	BR	12171	141	230	30.0	230 TD	200	420	0.3	2	1	1300
Lyttle Well	7-9-32	1151 Northwest Hill Road	Pamela Lyttle	1151 Northwest Hill Road	Pownal	VT	05261-9448	BR	2-022891	288	482	100.0	482 TD	382	420	0.3	4	2	1500
	7-9-33	1149 Northwest Hill Road	Susan Burgess	1149 Northwest Hill Road	Pownal	VT	05261-9448												
	7-9-34	1331 Northwest Hill Road	Jamyn Burgess	1331 Northwest Hill Road	Pownal	VT	05261-9447												
Lubeck Well	7-9-37	1374 Northwest Hill Road	Karin Lubeck	1374 Northwest Hill Road	Pownal	VT	05261-9439	BR	579	405	625	16.0	625 TD	609	420	0.3	5	2.5	2660
	7-9-38	1427 Northwest Hill Road	Ryan Bottesi	1427 Northwest Hill Road	Pownal	VT	05261-9446												
Peaslee Well	7-9-39	1503 Northwest Hill Road	Deanna Peaslee	1503 Northwest Hill Road	Pownal	VT	05261-9445	BR	41372	41372	125	40.0	104 WBF	64	420	0.3	8	4	1840
Porter Well	7-9-40	24 Poor Mans Road	Shelley Porter	24 Poor Mans Road	Pownal	VT	05261-9473	BR	7-1019	6783	500	TBD	260 WBF	TBD	420	0.3	0.75	0.4	2540
	7-9-45	1546 Northwest Hill Road	Wilfred Labonte	1546 Northwest Hill Road	Pownal	VT	05261-9441												
Sedlock Well	7-9-46	1633 Northwest Hill Road	Timothy Sedlock	1633 Northwest Hill Road	Pownal	VT	05261-9444	BR		235	505	TBD	505 TD	TBD	420	0.3	0	0.00	2860
Smithers Well	7-9-47	1744 Northwest Hill Road	Rosamond Smithers	1744 Northwest Hill Road	Pownal	VT	05261-9442	BR		234	305	TBD	305 TD	TBD	420	0.3	2	1	2860
Nicholas Well	6-9-26	824 Northwest Hill Road	Deborah Nicholas	PO Box 178	Pownal	VT	05261-0178	BR	7-382	309	500	200.0	500 TD	300	420	0.3	0.5	0.25	3350
	6-9-29	1104 Northwest Hill Road	Kenneth Held	1104 Northwest Hill Road	Pownal	VT	05261-9438												
Alta Gardens MHP	15-346-1	Post Drive	Alta Gardens Estates	101 Tremont Street	Barre	VT	05641-3507	BR		156	170	30.0	170 TD	140	3,596	7.5	15	15	3000
	15-346-2	41 Post Drive	Walter Adams	PO Box 62	Pownal	VT	05261-0062												
	15-346-2.1	61 Post Drive	Stacey Adams	PO Box 534	Pownal	VT	05261-0534												
	15-42-1	31 Montgomery Road	Richard Dorman	31 Montgomery Road	Pownal	VT	05261-9458										_		
Burlak Well	15-42-2	63 Montgomery Road	Linda Burlak	63 Montgomery Road	Pownal	VT	05261-9458	BR		155	115	TBD	115 TD	TBD	420	0.3	8	4	2990
	15-42-3	79 Montgomery Road	Barbara Harwood	79 Montgomery Road	Pownal	VT	05261-9458												
A 11- and 147-11	15-63-2	67 Valley View Drive	Cheryl Palmer	67 Valley View Drive	Pownal	VT	05261-9464	DD	41.41.4	41 41 4	500	05.0	F00 TD	415	420	0.2	1.05	0.72	2040
Atherton Well	15-63-3	91 Valley View Drive	Mark Atherton	91 Valley View Drive	Pownal	VI	05621-9464	BK	41414	41414	500	85.0	500 TD	415	420	0.3	1.25	0.63	2940
D1- 147-11	15-63-5	101 Valley View Drive	Robert Wilcox	101 Valley View Drive	Pownai	VI	05261-9463	DD	22714	270	500	(0	500 TD	404	420	0.2	0	0.00	2850
Beals Well	15-63-6	105 Valley View Drive	Harry Beals, Jr.	PO Box 58	Pownal	VI	05261-9463	BK	22714	270	500	6.0	500 ID	494	420	0.3	0	0.00	2850
	15-65-1	67 D Hill Koad	Michael Morpozult	PO Box 275	Pownal	VI	05261-0038												
	15 65 10	50 Oak Drive	David Hall	PO Box 244	Pownal	VI	05261-0273												
	15-65-11	86 Oak Drive	Andrew Deguasie	PO Box 211	Pownal	VT	05261-0244												
	15-65-12	83 Oak Drive	Brian Barcomb	PO Box 336	Pownal	VT	05261-0336												
	15-65-13	90 Oak Drive	James Carey	PO Box 7	Pownal	VT	05261-0007												
Gallese Well	15-65-14	183 Oak Drive	Robert Gallese	PO Box 402	Pownal	VT	05261-0402	BR	24722	24722	320	5.0	249 WBF	244	420	0.3	10	5.0	2970
	15-65-2	320 B Hill Road	Robert Clermont	320 B Hill Road	Pownal	VT	05261	DIR			020	0.0	215 1151			0.0	10	0.0	2,7.0
	15-65-2.1	B Hill Road	Marjorie Hurley	457 Middle Pownal Road	Pownal	VT	05261												
	15-65-3	369 B Hill Road	John Werner	PO Box 28	Pownal	VT	05261-0028												
Hall Well	15-65-4	364 B Hill Road	Jean Hall	PO Box 144	Pownal	VT	05261-0144	BR	33815	33815	702	140.0	702 TD	562	420	0.3	1	0.5	1980
	15-65-6	382 B Hill Road	George Klemm	111 North Street	Williamstown	VT	01267-2042												
	15-65-7	377 B Hill Road	James Cirillo	PO Box 47	Pownal	VT	05261-0047												
Holovach Well	15-65-8	379 B Hill Road	John Holovach	PO Box 15	Pownal	VT	05261-0015	BR		73	245	20.0	245 TD	225	420	0.3	2	1.0	2500
Pollert Well	15-9-19	498 Northest Hill Road	Terry Pollert	498 Northwest Hill Road	Pownal	VT	05261-9435	BR	1625160	363	500	100.0	500 TD	400	420	0.3	0	0.00	3240
	15-9-20	555 Northwest Hill Road	Janet Schutzman	555 Northwest Hill Road	Pownal	VT	05261-9451												
	15-9-21	598 Northwest Hill Road	Norman Chaffee	598 Northwest Hill Road	Pownal	VT	05261-9436												
	15-9-23	652 Northwest Hill Road	Bert Atherton	652 Northwest Hill Road	Pownal	VT	05261-9453												
	15-9-24	719 Montgomery Road	Irving Tanzman	719 Northwest Hill Road	Pownal	VT	05261-9450												
	15-US7-25	6275 Route 7	Keith Pedercini	PO Box 167	Pownal	VT	05261-0167												
	15-US7-26	6213 Route 7	Gary Jelley	PO Box 176	North Pownal	VT	05260-0176												
	15-US7-27	23 B Hill Road	Ronald George	PO Box 98	North Pownal	VT	05260-0098												
	15-US7-29	6185 Route 7	James Winchester	PO Box 22	Pownal	VT	05261-0022												
			Millard Mobile Home Park,		NT 41 1 1		010 (7												
l	15-US7-30	Route 7	LLC.	34 Ashland Street	North Adams	MA	01247												
	6-44-3	180 Krum Road	Michael Hartman	180 Krum Road	Pownal	VT	05261-9461												
C: 147.11	6-44-4	242 Krum Road	Mark Miller	242 Krum Road	Pownal	VT	05261-9461	DD	101 0 5000	010	222	40.0	000 550	102	400	0.0	00	10.0	20.40
Strong Well	7-34-12	1000 Brookman Road	William Strong	Mason Hill Mgt c/o WM Strong 477	New York	NY	10022-6803	BK	101-2-7299	313	222	40.0	222 TD	182	420	0.3	20	10.0	3940
Maret Well	7-44-1	5/ Krum Koad	Gregory Maret	57 Krum Koad	Pownal	VT	05261-9467	BK DD	3776U 27750	5101	600	400.0	000 ID	200	420	0.3	40	20.0	3060
	7-057-17	21 Cash Place	Janet I ornabene	72/5 Koute 7	Pownal	V1 VT	05261-9494	DK	21/3/	21/3/	280	15.0	140 P	125	420	0.3	40	20.0	3930
	7-057-18	21 Cash Place	Cherie Smith	Z1 Cash Place	Pownal	V1 VT	05261-9214												
	7-05/-19	Pourto 7	Stephen Hart	24 Walnut Stoot	Williamstown	V I M A	01267 2266												
	7-US7-22	141 Purcell Road	Michelvne Pinard	141 Purcell Road	Powpal	VT	05261								-				
	7-US7-24	136 Purcell Road	Robert Sweet	136 Purcell Dugway	Pownal	VT	05261												
		100 I urteli Koau		2 ug.u.,										1			1		

Beaver Wood Energy Pownal LLC. Groundwater Withdrawal Testing: Existing Gravel Well at the Green Mtn Race Track All Known Wells and Monitoring Locations Within 3,000 Feet of the Project Well, and Within its Area of Influence VHB 10/15/2010

Well ID	Parcel #	Site Address	Owner	Mail	ing Address			Well	Well	Well	Well Total	Static Level,	Hyd. Base [2]	TAH [3]	Den	nand	Yield (O	GPM)	Distance, Ft
								Type[1]	Tag	Rpt#	Depth, Ft BGS	Ft BTC	Ft BGS	Feet	gpd	gpm	Driller's P	ermit [4]	from BWE Well
no well ? (undeveloped)	6-9-30	Northwest Hill Road	Deborah Nicholas	PO Box 178	Pownal	VT	05261-0178												
no well ? (undeveloped)	7-9-42	625 Poor Mans Road	Howard Maturski	625 Poor Mans Road	Pownal	VT	05261-9472												
no well ? (undeveloped)	6-9-28	Northwest Hill Road	David Walsh	136 C Shore Road	Peabody	MA	01960-3062												
no well ? (undeveloped)	15-65-5	B Hill Road	Anthony Iannuccillo	5 Wood Dale Road	Ballston Lake	NY	12019-9359												
no well ? (undeveloped)	15-65-9	B Hill Road	Vincent Freccia, Jr.	11 Westwood Place	Stamford	VT	06902-1419												
no well ? (undeveloped)	7-9-42.1	Northwest Hill Road	Harry Beals, Jr.	105 Valley View Drive	Pownal	VT	05261-9463												
Project Well	7-US7-21	Route 7	Progress Partners, Ltd.	158 Westmoreland Ave	White Plains	NY	10606												
no well ? (undeveloped)	7-US7-21.1	Route 7	John & Heather Tietgens	473 Main Steet	Stamford	VT	05352												
no well (cemetery)	7-US7-21.2	Route 7	Town of Pownal	467 Center Street	Pownal	VT	05261												
MW-1					SW			14.1	6.6	14.1 TD	7.0	0	0			3290			
MW-2								SW			14.0	7.9	14.0 TD	5.5	0	0			3120
MW-3								SW			14.0	9.2	14.0 TD	4.3	0	0			2950
MW-4								SW			17.0	11.2	17.0 TD	5.2	0	0			3260
MW-5								SW			14.6	9.0	14.6 TD	5.3	0	0			3070
MW-6			Progress Partners I to and					SW			14.6	9.6	14.6 TD	4.8	0	0			2970
MW-7	7 LIG7 21 1 (RW/E)	Lougtt Compton Pond	Boaver Wood Eporgy Bourgal	158 Westmoreland Ave	White Plaine	NIV	10606	SW			(proposed)				0	0			760
MW-8	7-037-21.1 (DWE)	Loven Cemetery Road	LLC	158 Westinoreiand Ave	writte 1 failts	181	10000	SW			(proposed)				0	0			460
MW-9			LEC.					SW			(proposed)				0	0			380
MW-10								SW			(proposed)				0	0			750
PZ-1S								SW			(proposed)				0	0			280
PZ-1D								SW			(proposed)				0	0			280
PZ-2S								SW			(proposed)				0	0			350
PZ-2D								SW			(proposed)				0	0			350

Notes:

-- not applicable

TBD = To Be Determined (not known, no available information, to be measured during Source Testing)

[1] Well Types: BR = Bedrock, GPW = Gravel-Packed Well, GW = Gravel Well, SW = Shallow Well, SP = Spring

[2] Hydraulic Base Notes: TD = Total Depth, P = pump setting, WBF = Water-Bearing Fracture

[3] Total Available Head

[4] YIELD shown is 1/2 the drillers yield for wells which have not had a pump test.

October 16, 2010

Mr. Well Owner 123 Main St. Pownal, VT 05261

Parcel Number: x-x-x

RE: Beaver Wood Energy Pownal LLC Testing of Water Supply Well

Dear _____:

Beaver Wood Energy Pownal LLC is developing a water source to provide a backup source of water for the proposed biomass energy project at the former Green Mountain Race Track site in Pownal, VT. A pumping test will be conducted by Vanasse Hangen Brustlin, Inc. (VHB) in the winter of 2010-2011 on the existing well at the race track, to determine the long-term well yield in accordance with State of Vermont regulations.

Vermont regulations require us to monitor existing water supplies in the vicinity of the Beaver Wood Energy Well. This monitoring will determine if the pumping of the well affects the water level in neighboring water supplies. Please refer to the enclosed letter from the State of Vermont Water Supply Division explaining the testing procedure.

Through a recent search of public records, we have determined that you own property within the 3,000-foot monitoring radius. If your water source is present within this radius, you would be eligible to have your well monitored, and therefore we have enclosed a monitoring permission form/questionnaire. The information from the questionnaire will be used in the evaluation of any impacts related to the proposed wells. Please fill out the questionnaire thoroughly, and return it in the enclosed postage paid envelope by the close of business on 2010. Responses may also be faxed to our office at 802-425-7799.

Please clearly indicate in Part II of the form if a water supply source exists on your property and, if so, if we have your permission to monitor the water level in your well during our testing of Wells A and B. If a well exists on your property, there may be a silver tag attached to the well with a metal band. This tag displays the Vermont Well Tag number, and this number should be recorded in Part III of the questionnaire under "Well/Spring Details". It is very important that we have the numbers from the well tag.

«First_Names» «Last_Name» Page 2 October 16, 2010

If you allow VHB to monitor your water source during the upcoming test, we would open your well and install a sanitized length of polyethylene tubing (sounding tube), which would enable measurement of the water level in the well during the test. Please note that if your wellhead is buried, it would be your responsibility to locate and uncover it; after the test it would be your responsibility to re-cover your buried wellhead. Occasionally, in some older wells, the installation of the sounding tube can dislodge sediment and rust from inside the well, temporarily discoloring your water. This situation is harmless and can be solved simply by running a hose onto the ground for a few hours, to flush the water clean.

The water level in your well would be measured using an automatic datalogger to be placed in the sounding tube. Additionally, field technicians would visit the well daily to check the water levels. Currently, we anticipate that the monitoring would occur over a two week period beginning in _____2011. Following the completion of all water level monitoring, the probe tube would be removed (if requested) and the well cap resealed. At your discretion, disinfection of the water source with chlorine would be performed. Also, if requested, you would be provided with the data collected at your well.

Should you have any questions on the enclosed material, please do not hesitate to contact me. Thank you for your attention to this matter.

Sincerely,

Owen McEnroe Environmental Scientist Enclosures

F:\57407.03 BWE Pownal Permitting\docs\letters\Well Owner Permission Letter.doc

VHB Vanasse Hangen Brustlin, Inc.

7056 US Route 7, PO Box 120 | North Ferrisburgh VT, 05473 | (802) 425-7788 | Fax (802) 425-7799

В	WATER SUPPLY QUESTIONNAIRE: eaver Wood Energy Pownal, LLC Well Pump Tes	t FOR OFFICE USE ONLY: Date Rec'd						
I.	OWNER INFORMATION and SIGNATURE							
	Street Address of the Property							
	Owner's Name and Address Tele	phone & Email:						
		work						
		home						
		VT (if out of state)						
		Email						
	If rented: Tenants name	phone						
	Signature: Hangen Brustlin, Inc.(VHB) to monitor my water source and I agree Terms and Conditions (below). Date:	I give permission to Vanasse to the Water Source Monitoring						
11.	WELL INFORMATION 1. Does your property have its own on-site water supply? y 2. IF NO: How does your house get water? Check one: Shared well (shared with Town water public community water supply Other, Describe:	es no)						
IF [·]	TOWN OR PUBLIC WATER SUPPLY, WE NEED NO FURTHER	NFORMATION. THANK YOU.						
	 If you have on-site or shared water supply: What type of well or spring do you have? Check one: drilled well (sometimes called "artesian") shallow well point (sometimes called "sand point", usually 2 to 4 inches in diameter) shallow dug well (usually 2 or 3 feet in diameter) spring 							
IF TE ne (ch	INSIDE TEST RADIUS, WOULD YOU LIKE YOUR WATER SOU STING OF THE BEAVER WOOD ENERGY WELL? In order to c cessary to install a sanitized sounding tube in the well bore fo neck one)yesnonot in test radius After the end of the test, do you want the sounding tube to re	RCE TO BE MONITORED DURING omplete this monitoring it will be r the duration of the well testing emain in the well?						
	After the end of the test, do you want your well chlorinated? After the end of the test, do you want us to mail you the test Every well/spring owner should complete the following ques giving us permission to monitor your well or spring (please g	results? tionnaire, even if you are not jo to next page):						

III. WELL/SPRING DETAILS:	
Please fill in as much as you can. Just leave	blank what you don't know.
1. Year drilled	•
2. Driller	
3. Owner's name when well was drilled	
4. Vermont Well Number:	(usually stamped on metal plate attached somewhere
to the well casing: some wells in Vermo	nt do not have numbers stamped on them)
5. Bottom of well is drilled into (check one):	bedrock: sand/gravel: don't know
6 Depth of well/spring: (feet)	· · · · · · · · , · · · · · ·
7. Driller's estimated vield:	allons per minute)
8 Depth the driller hit water (feet)	
9 Static Water level (feet)	
10 Depth to the pump ft.	
11 Type of pump:	ump is in the well)
iet nump (num	n is in hasement)
other Describ	۵.
don't know	
12 Plumber who has worked on well/plumbir	na most recently:
Name:	Type of Work done:
Addless	
13. Is there a water softener on the system?	Vec no
Is there a water filter on the system?	
Is there a water litter of the system:	yes no
when installed?	
14 Have you had any quality or quantity prok	alome?
14. Have you had any <u>quality or quality proc</u>	<u>victor quantitu:</u>
water quality yes no	when:
whet problem:	whet problem:
	what problem.
15. Have you had a water quality analysis do	no on vour well?
If yes when for what par	amotors?
roculte:	
IV WELL/SPRING LOCATION	
Top of the well (check all that apply):	
Sticks up above ground	
In the basement	
Buriod If buriod how doop?	(foot) Is it buried in anything?
Note that it is the wall sweets reasonable	lity to locate dia up and to hum, any humind
Note that it is the well owner's responsible	inty to locate, dig-up, and re-bury any buried
wellnead or spring at owner's cost.	
On the aerial photo that is included, pleas	e indicate where your well is located. Also feel
free to provide a sketch map, showing ho	use, garage, driveway, road, your well/spring,
and anything else to help us to find it (ind	icate distances to the well/spring from corner
of house or other features).	
· · · · · · · · · · · · · · · · · · ·	
V.	WATER DEMAND: Water supply serves (check one): RESIDENTIAL one house only two or more houses/apartments/condominiums NON RESIDENTIAL hotel restaurant other, describe: GO TO APPROPRIATE SECTION BELOW.
----	--
	RESIDENTIAL: Number of bedrooms in house Other large water uses (livestock, pool)? Describe
	HOTEL State-calculated water demand: gal/day If State Water/Wastewater permit, permit number don't know Number of bedrooms
	RESTAURANT State-calculated water demand: gal/day don't know If State Water/Wastewater permit, permit number year Number of seats: for meals for bar Meals served per day (check one): 2 3
	STORE/OFFICE/BUSINESS State-calculated water demand: gal/day don't know If State Water/Wastewater permit, permit number don't know Maximum number of full-time employees in store at one time: year
	OTHER Estimate your water use: gal/day or gal/min Describe your establishment:
	Water Source Monitoring Terms and Conditions:
	Vanasse Hangen Brustlin, Inc. (VHB) or its subcontractor will instrument water sources, with a sounding tube, for monitoring and will monitor water levels, in accordance with the water source owner's written instructions on the permission form. Reasonable precautions will be taken to safeguard the water source from damage and contamination in accordance with normal standard of care for the water well industry.
	Occasionally, in certain wells, the installation of the sounding tube can dislodge sediment and rust from inside the well, temporarily discoloring the water. This situation can generally be resolved by running water from an outdoor spigot and garden hose onto the ground for a few hours, to flush the water clean. For wells that have water filters, this dislodged sediment can clog the filter, causing an apparent water outage, which typically can be resolved by removing the filter cartridge and flushing the well until the water is clean, then replacing the cartridge.

VHB shall not be liable for any alleged damage or inconvenience due to existing conditions or operations of any well, pump, spring, water line, or other component of a water source, provided that VHB conducts its monitoring in accordance with the water source owner's written instructions on the permission form, or for any inconvenience due to decreased water flow or pressure during or following the testing.

At the request of the water source owner, VHB will discontinue monitoring and remove its equipment at any time.

State of Vermont

AGENCY OF NATURAL RESOURCES **Department of Environmental Conservation**

Water Supply Division The Old Pantry Building 103 South Main Street Waterbury, VT 05671-0403 www.vermontdrinkingwater.org

[PHONE] (802) 241-3400 [FAX] (802) 241-3284

Dear Water Source Owner:

The Water Supply Division is currently reviewing an application for a proposed Public Water Supply well. An important aspect of this review is to determine what impact this proposed public water supply well will have on the yield of nearby private and public water supply source (i.e. drilled wells, dug wells, or springs).

To make this assessment, the applicant has applied to conduct a pump test on the proposed public water supply well. During a pump test, the proposed well is pumped at a steady rate for up to five days (less for smaller projects). The water level in neighboring sources is measured during the test to record changes caused by the pump tested well. If this proposed water supply well is predicted to reduce the yield of your water supply below expected demand for your home or business, then a source interference problem exists and the well will not be permitted. The applicant will have to resolve all interference problems before the source could be permitted.

The applicant is required to contact you and others in the area to make arrangements to monitor your source(s) while the pump test is performed on the proposed well. We recommend that you allow the applicant to monitor your source during the pump test. This is the best way to determine what impact, if any, the proposed new well will have on your water supply source. If you choose to deny access to your source for monitoring during this test, then the interference affects on your water supply will have to be estimated.

If you have any questions, please call the Water Supply Division of the Vermont Department of Environmental Conservation at (802) 241-3400 or toll free in Vermont at 1-800-823-6500.

APPENDIX 5

ſ

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1299 133 1377 144 145 145 145 163 168 173 168 173 179 184 190 195 200
-18 136 136 -18 136 136 -16 140 140 -14 144 144 -114 144 144 -12 149 148 -10 154 153 -8 160 158 -6 166 163 -4 172 168 -2 178 174 0 185 180 2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253	13337 137 141 145 145 145 145 154 155 163 168 173 179 184 1900 195 201
100 120 130 -16 140 140 -16 140 140 -11 144 144 -12 149 148 -10 154 153 -8 160 158 -6 166 163 -4 172 168 -2 178 174 0 185 180 2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	137 141 145 145 149 154 159 163 163 168 173 179 184 190 1955 201
-14 144 144 -12 149 148 -10 154 153 -8 160 158 -6 166 163 -4 172 168 -2 178 174 0 185 180 2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	141 145 149 154 159 163 168 173 168 173 179 184 190 195 201
-12 149 148 -10 154 153 -8 160 158 -6 166 163 -4 172 168 -2 178 174 0 185 180 2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	145 149 154 159 163 168 173 179 184 190 195 201
-10 154 153 -8 160 158 -6 166 163 -4 172 168 -2 178 174 0 185 180 2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	149 154 159 163 168 173 179 184 190 195 201
-8 160 158 -6 166 153 -4 172 168 -2 178 174 0 185 180 2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	154 159 163 168 173 179 184 190 195 201
-6 166 163 -4 172 168 -2 178 174 0 185 180 2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	159 163 168 173 179 184 190 195 201
-4 172 168 -2 178 174 0 185 180 2 192 186 4 199 192 6 207 198 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	163 168 173 179 184 190 195 201
-2 178 174 0 185 180 2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 20 265 245 22 275 253 24 284 260	168 173 179 184 190 195 201
0 185 180 2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 20 265 245 22 275 253 24 284 260	173 179 184 190 195 201
2 192 186 4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 20 265 245 22 275 253 24 284 260	179 184 190 195 201
4 199 192 6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	184 190 195 201
6 207 198 8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 20 265 245 22 275 253 24 284 260	190 195 201
8 215 204 10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	195 201
10 223 211 12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	201
12 231 218 14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	20
14 239 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	206
14 255 224 16 248 231 18 257 238 20 265 245 22 275 253 24 284 260	212
18 257 238 20 265 245 22 275 253 24 284 260	218
20 265 245 22 275 253 24 284 260	276
20 205 245 22 275 253 24 284 260	224
24 284 260	236
24 204 200	21.2
26 293 267	242
28 302 275	240
30 312 282	254
32 321 290	200
34 331 297	272
36 341 304	279
38 351 312	285
//0 360 319	202
/2 370 327	296
42 370 327	302
//6 390 3/1	308
//8 399 3/.9	31/
50 409 356	320
52 419 363	325
54 428 370	331
56 438 377	336
58 447 383	342
60 457 390	347
62 465 397	352
64 403	357
66 409	362
68 415	366
70 421	371
72 427	375
74 432	379
76 437	387
78 442	
80 447	387

Beaver Wood Energy Pownal LLC – Water Needs & Availability Study Streamflow, Groundwater, and Storage Mass Hydrograph Analysis

Model Output Summary

Overall:	Percent of	all years	that demand	is fully met	3%	100%	33%	100%	100%	3%	40%	100%
	e Pond	Minimum	Volume	(Mgal)	0	0	2	59	0	0	7	53
	Storage	Starting	Volume	(Mgal)	0	0	Ł	71	0	0	ω	63
	oduction	Well	Total	Mgal	0	0	0	o	38	4	ß	ъ
63)	Source Pr	River	Total	Mgal	136	174	162	174	136	136	160	169
sar (n=		age	pr	%	%0	%0	16%	22%	%0	%0	15%	19%
age Y∈		Stor	Por	Mgal	0.0	0.0	25.9	37.6	0.0	0.0	24.5	33.7
r Aver	_	11		%	%0	%0	%0	%	22%	3%	3%	2%
ilts foi	umptior	We		Mgal	0.0	0.0	0.0	0.0	37.6	0.4	0.4	4.0
Resu	nt Cons	er		%	100%	100%	84%	78%	78%	%£6	82%	78%
	Plai	Riv		Mgal	136	174	136	136	136	136	136	136
		Total		Mgal	136	174	162	174	174	14.0	165	174
		%	of	Demand	%8£	100%	93%	100%	100%	81%	95%	100%
	Plant Demand	Total		Mgal	771	174	174	174	174	174	174	174
Ē	ing	es · ·	(UIU	Well	0	0	0	0	500	6E	39	39
Maxin	Pump	Rati	(gal/i	River	1,458	1,458	1,458	1,458	1,458	1,458	1,458	1,458
		Scenario			Max 465.2 gpm demand, river intake with 0.7 csm ABF limit. No well No storane	Max 465.2 gpm demand, river intake with no flow limit. No well. No storage.	Max 4.65.2 gpm demand, river intake with 0.7 csm ABF limit. No well. 12 Mgal storage (existing pond).	Max 465.2 gpm demand, river intake with 0.7 csm ABF limit. No well. 83.4 Mgal storage (as needed to meet demand).	Max 465.2 gpm demand, river intake with 0.7 csm ABF limit. 500 gpm well. No storage.	Max 465.2 gpm demand, river intake with 0.7 csm ABF limit. 39 gpm well. No storage.	Max 4.65.2 gpm demand, river intake with 0.7 csm ABF limit. 39 gpm well. 12 Mgal storage (existing pond).	Max 465.2 gpm demand, river intake with 0.7 csm ABF limit.
					-	2	m	4	ъ	9	Ę.	œ

Beaver Wood Energy Pownal LLC - Water Needs & Availability Study Streamflow, Groundwater, and Storage Mass Hydrograph Analysis Model Output

Scenario: 1

Source	Max Pump	Rate (gpm)	<u>Minimum Downstream Flow (csm)</u>
Hoosic River:	1,458		0.70
Well:	0		NA
<u>Storage</u>	Volume (M	<u>gal)</u>	
Pond:	0		
<u>Plant</u>	gpm	MGD	
Average Demand:	321.6	0.46	
Peak Demand	465.2	0.67	

				Output	For Sc	enario	1														
	Wet B	ulb Temper	atures		Plant I	Demand				Plant	Consum	ption				Source F	roduction	S	torage Po	ond	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	W	ell	Sto	rade	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Pr	nd	Total	Total	Volume	Volume	Refill	Fxreedence
	F	F	F	MGD	MGD	MGD	Moal	Demand	Mgal	Moal	%	Mgal	%	Moal	%	Moal	Moal	(Mgal)	(Mnal)	Date	(Percentile)
10/.7	1.7	44.6	76.6	0.28	0.4.7	0.64	172	87%	1/. 9	1/. 9	10.0%	0.0	0%	0.0	0%	1/.9	0	0	0	0ct 01	31%
1941	12.5	44.0	775	0.20	0.47	0.64	171	61.9	10.9	100	100%	0.0	0%	0.0	0%	100	0	0	0	0ct 01	86%
1940	- 12.3	42.5	77.0	0.21	0.47	0.04	170	04%	10.2	10.2	100%	0.0	0%	0.0	0%	10.7	0	0	0	0+ 01	00%
1949	3.0	40.2	75.0	0.27	0.49	0.64	170	0.7%	102	102	100%	0.0	0%	0.0	0%	102	0	0	0		92/6
1950	-6.8	43.5	12.1	0.24	0.47	0.64	171	83%	141	141	100%	0.0	0%	0.0	0%	141	0	0	0		41%
1951	-2.0	44.8	f2.4	0.24	0.4 f	0.64	173	93%	161	161	100%	0.0	0%	0.0	0%	161	0	0	0	Uct 01	17%
1952	-6.9	44.4	77.6	0.23	0.48	0.64	174	82%	143	143	100%	0.0	0%	0.0	0%	143	0	0	0	Oc† 01	39%
1953	3.6	45.3	75.9	0.29	0.48	0.64	177	57%	100	100	100%	0.0	0%	0.0	0%	100	0	0	0	Oct 01	94%
1954	-2.9	44.4	74.6	0.24	0.48	0.64	174	69%	121	121	100%	0.0	0%	0.0	0%	121	0	0	0	Oct 01	72%
1955	-8.1	45.4	77.4	0.23	0.48	0.64	175	78%	136	136	100%	0.0	0%	0.0	0%	136	0	0	0	Oc† 01	47%
1956	-9.0	42.3	73.5	0.22	0.46	0.64	169	78%	132	132	100%	0.0	0%	0.0	0%	132	0	0	0	Oc† 01	61%
1957	-13.5	44.2	75.6	0.20	0.48	0.64	176	68%	121	121	100%	0.0	0%	0.0	0%	121	0	0	0	Oct 01	73%
1958	-5.2	44.2	74.4	0.23	0.48	0.64	174	77%	134	134	100%	0.0	0%	0.0	0%	134	0	0	0	Oct 01	53%
1959	-1.9	44.0	77.5	0.26	0.48	0.64	174	72%	125	125	100%	0.0	0%	0.0	0%	125	0	0	0	Oct 01	67%
1960	5.0	44.7	72.4	0.27	0.47	0.64	173	91%	157	157	100%	0.0	0%	0.0	0%	157	0	0	0	Oct 01	22%
1961	-7.6	43.9	75.8	0.23	0.47	0.64	171	80%	138	138	100%	0.0	0%	0.0	0%	138	0	0	0	Oct 01	45%
1962	-4.9	43.8	73.3	0.24	0.48	0.64	176	56%	98	98	100%	0.0	0%	0.0	0%	98	0	0	0	Oct 01	97%
1963	-11.2	41.8	75.6	0.22	0.47	0.64	172	62%	107	107	100%	0.0	0%	0.0	0%	107	0	0	0	Oct 01	89%
1964	-2.0	43.8	75.3	0.24	0.49	0.64	179	55%	99	99	100%	0.0	0%	0.0	0%	99	0	0	0	Oct 01	95%
1965	12.7	44.3	68.8	0.30	0.48	0.60	177	42%	75	75	100%	0.0	0%	0.0	0%	75	0	0	0	Oct 01	98%
1966	18.0	44.3	68.8	0.33	0.48	0.60	176	76%	134	134	100%	0.0	0%	0.0	0%	134	0	0	0	Oct 01	55%
1967	18.0	443	68.8	0.33	0.48	0.60	176	94%	165	165	100%	0.0	0%	0.0	0%	165	0	0	0	Oct 01	14%
1968	-16.1	435	76.9	0.20	0.48	0.64	176	76%	133	133	100%	0.0	0%	0.0	0%	133	0	0	0	Oct 01	56%
1960	- 10.1	45.5	20.0	0.20	0.40	0.60	176	0.0%	15.5	153	100%	0.0	0%	0.0	0%	155	0	0	0	0c+ 01	20%
1070	-0.0	44.0	(0.0	0.25	0.40	0.00	170	7078	125	125	100%	0.0	0%	0.0	076	107	0	0	0	0-1-01	2076
1970	10.0	44.5	20.0	0.33	0.40	0.00	170	0.2%	1/7	1/ 7	100%	0.0	0%	0.0	0%	1/ 2	0	0	0	0ct 01	32%
1971	10.0	44.5	00.0	0.55	0.40	0.60	170	03/6	147	147	100%	0.0	0%	0.0	0%	147	0	0	0		20%
1972	10.0	44.5	7/ 1	0.55	0.40	0.60	170	01/6	152	152	100%	0.0	0%	0.0	0%	152	0	0	0	01 01	20%
1973	-3.5	45.1	74.1	0.24	0.47	0.64	173	89%	155	155	100%	0.0	0%	0.0	0%	155	0	0	0		23%
1974	-10.8	43.0	#3.Z	0.22	0.46	0.64	169	85%	144	144	100%	0.0	0%	0.0	0%	144	0	0	0	Ucf 01	38%
1975	-0.9	43.4	76.8	0.25	0.4 f	0.64	1/1	100%	1/1	171	100%	0.0	0%	0.0	0%	1/1	0	0	0	Oct 01	5%
1976	-12.2	44.5	13.8	0.21	0.4 f	0.64	172	98%	169	169	100%	0.0	0%	0.0	0%	169	0	0	0	Oct 01	9%
1977	-1.6	42.9	77.3	0.26	0.47	0.64	171	95%	162	162	100%	0.0	0%	0.0	0%	162	0	0	0	Oct 01	16%
1978	-2.2	42.6	75.0	0.25	0.46	0.64	168	78%	132	132	100%	0.0	0%	0.0	0%	132	0	0	0	Oct 01	63%
1979	-10.4	43.5	75.6	0.22	0.47	0.64	171	75%	128	128	100%	0.0	0%	0.0	0%	128	0	0	0	Oct 01	64%
1980	0.3	44.1	75.9	0.26	0.48	0.64	177	65%	115	115	100%	0.0	0%	0.0	0%	115	0	0	0	Oct 01	81%
1981	-9.5	42.2	76.9	0.22	0.47	0.64	172	62%	107	107	100%	0.0	0%	0.0	0%	107	0	0	0	Oc† 01	91%
1982	-6.9	41.3	77.9	0.23	0.47	0.64	170	80%	136	136	100%	0.0	0%	0.0	0%	136	0	0	0	Oc† 01	48%
1983	-4.5	45.9	77.3	0.25	0.47	0.64	173	62%	108	108	100%	0.0	0%	0.0	0%	108	0	0	0	Oct 01	88%
1984	-8.9	43.8	75.1	0.22	0.46	0.64	168	71%	119	119	100%	0.0	0%	0.0	0%	119	0	0	0	Oct 01	75%
1985	1.5	45.1	76.3	0.26	0.48	0.64	174	67%	116	116	100%	0.0	0%	0.0	0%	116	0	0	0	Oct 01	80%
1986	-1.0	44.8	77.4	0.25	0.47	0.64	171	97%	167	167	100%	0.0	0%	0.0	0%	167	0	0	0	Oc† 01	11%
1987	-4.7	45.0	76.5	0.24	0.47	0.64	172	80%	139	139	100%	0.0	0%	0.0	0%	139	0	0	0	Oct 01	44%
1988	-5.0	44.3	79.1	0.24	0.48	0.64	174	83%	145	145	100%	0.0	0%	0.0	0%	145	0	0	0	Oct 01	36%
1989	-4.6	44.0	76.0	0.23	0.47	0.64	172	94%	161	161	100%	0.0	0%	0.0	0%	161	0	0	0	Oct 01	19%
1990	-3.8	44.3	73.1	0.24	0.48	0.64	174	88%	153	153	100%	0.0	0%	0.0	0%	153	0	0	0	Oct 01	28%
1991	0.0	46.3	75.8	0.26	0.49	0.64	180	74%	133	133	100%	0.0	0%	0.0	0%	133	0	0	0	Oct 01	58%
1992	4.7	43.9	73.2	0.27	0.47	0.64	173	77%	133	133	100%	0.0	0%	0.0	0%	133	0	0	0	Oct 01	59%
1993	-6.7	43.9	78.4	0.23	0.47	0.64	172	63%	109	109	100%	0.0	0%	0.0	0%	109	0	0	0	Oct 01	84%
1994	-14.9	42.7	77.0	0.20	0.47	0.64	171	80%	136	136	100%	0.0	0%	0.0	0%	136	0	0	0	Oct 01	50%
1995	-4.9	45.6	77.3	0.24	0.49	0.64	178	67%	119	119	100%	0.0	0%	0.0	0%	119	0	0	0	Oct 01	77%
1996	-9.2	43.6	72.7	0.22	0.46	0.64	169	87%	147	147	100%	0.0	0%	0.0	0%	147	0	0	0	Oct 01	34%
1997	_19	44.7	76.6	0.25	0.47	0.64	172	72%	123	123	100%	0.0	0%	0.0	0%	123	0	0	ů n	Oct 01	70%
1998	35	465	74.4	0.26	0.4.8	0.64	174	72%	125	125	100%	0.0	0%	0.0	0%	125	0	0	0	Oct 01	69%
1999	_71	45.8	79.8	0.22	0 /. 9	0.67	177	62%	111	111	100%	0.0	0%	0.0	0%	111	n	n	n	0r+ 01	83%
2000	- 7.1	4.5.0	77.0	0.22	0.47	0.04	177	02%	170	170	100%	0.0	0%	0.0	0%	170	0	0	0		6%
2000	-0.0	43.0	0.C1 79.0	0.20	0.47	0.04	172	27%	1/1	1/ 1	100%	0.0	0%	0.0	0%	1/1	0	0	0		1.2%
2001	1.0	44.1	70.0	0.30	0.40	0.04	174	659/	141	141	100%	0.0	0%	0.0	0%	141	0	0	0		42/0
2002	14.D	41.0	11.5	0.31	0.50	0.04	170	010/	110	110	100%	0.0	0%	0.0	0%	118	0	U	0		10%
2003	-0.D	43.4	14.9	U.Z4	U.41	V.04	170	21%	154	104	100%	U.U	U%	0.0	0%	154	U	U	0	ULLUI	20%

Scenario: 1

Source	Max Pump	Rate (gpm)
Hoosic River:	1,458	
Well:	0	
<u>Storage</u>	Volume (M	gal)
Pond:	0	
<u>Plant</u>	gpm	MGD
Average Demand:	321.6	0.46
Peak Demand:	465.2	0.67

Minimum Downstream Flow (csm) 0.70

NA

				Output	For Sc	enario	1														
	Wet Bulb Temperatures Plant Demand								Plant	Consum	ption				Source P	roduction	St	torage Po	ond		
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	Ri	ver	We	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
2004	-8.7	44.6	74.4	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	3%
2005	-7.2	45.0	76.1	0.22	0.48	0.64	174	73%	128	128	100%	0.0	0%	0.0	0%	128	0	0	0	Oct 01	66%
2006	5.7	45.9	77.8	0.28	0.49	0.64	177	93%	165	165	100%	0.0	0%	0.0	0%	165	0	0	0	Oct 01	13%
2007	0.1	44.7	76.5	0.26	0.49	0.64	177	86%	153	153	100%	0.0	0%	0.0	0%	153	0	0	0	Oct 01	27%
2008	0.5	45.4	77.6	0.26	0.49	0.64	177	95%	169	169	100%	0.0	0%	0.0	0%	169	0	0	0	Oct 01	8%
2009	0.3	43.6	74.5	0.26	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oc† 01	2%
Average	-2.0	44.3	75.0	0.25	0.48	0.64	174	78%	136	136	100%	0.0	0%	0.0	0%	136	0	0	0	Oct 01	
Minimum	-16.1	41.3	68.8	0.20	0.46	0.60	168	42%	75	75	100%	0.0	0%	0.0	0%	75	0	0	0	Oct 01	
Maximum	18.0	47.0	79.8	0.33	0.50	0.64	181	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	
<u>Worst-Case Year</u> 1965	12.7	44.3	68.8	0.30	0.48	0.60	177	42%	75	75	100%	0.0	0%	0.0	0%	74.7	0.0	0	0	Oct 01	98%
D -	42																				

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm| Graph1

10/12/2010

8/30 7/31 -----River Withdrawal 6/30 Beaver Wood Energy Pownal LLC: Mass Balance Hydrograph 5/31 ------Scenario #1, Worst-Case Year 4/30 River Usage – Plant 3/31 Date 3/1 I 1/30 Total Plant Usage 12/31 11/30 10/31 10/1 0.0 0.1 0.6 0.5 0.4 0.7 0.J 0.2 Flow (MGD)

Beaver Wood Energy Pownal LLC – Water Needs & Availability Study Streamflow, Groundwater, and Storage Mass Hydrograph Analysis Model Output

Scenario: 2

Source	Max Pump	Rate (gpm)	<u>Minimum Downstream Flow (csm)</u>
Hoosic River:	1,458		0.00
Well:	0		NA
<u>Storage</u>	Volume (Mg	al)	
Pond:	0		
<u>Plant</u>	gpm	MGD	
Average Demand:	321.6	0.46	
Peak Demand:	465.2	0.67	

				Output	For Sc	enario	2														
	Wet B	ulb Temper	atures		Plant [Demand				Plant	Consum	ption				Source P	roduction	Si	torage Po	ind	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	W	ell	Sto	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
1947	4.7	44.6	76.6	0.28	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	70%
1948	-12.5	42.3	77.5	0.21	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	0	0	Oct 01	84%
1949	3.8	46.2	75.8	0.27	0.49	0.64	178	100%	178	178	100%	0.0	0%	0.0	0%	178	0	0	0	Oct 01	6%
1950	-6.8	43.5	72.7	0.24	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	0	0	Oct 01	86%
1951	-2.0	44.8	72.4	0.24	0.47	0.64	173	100%	173	173	100%	0.0	0%	0.0	0%	173	0	0	0	Oct 01	56%
1952	-6.9	44.4	77.6	0.23	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	42%
1953	3.6	45.3	75.9	0.29	0.48	0.64	177	100%	177	177	100%	0.0	0%	0.0	0%	177	0	0	0	Oct 01	19%
1954	-2.9	44.4	74.6	0.24	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	38%
1955	-8.1	45.4	77.4	0.23	0.48	0.64	175	100%	175	175	100%	0.0	0%	0.0	0%	175	0	0	0	Oct 01	34%
1956	-9.0	42.3	73.5	0.22	0.46	0.64	169	100%	169	169	100%	0.0	0%	0.0	0%	169	0	0	0	Oct 01	95%
1957	-13.5	44.2	75.6	0.20	0.48	0.64	176	100%	176	176	100%	0.0	0%	0.0	0%	176	0	0	0	Oct 01	20%
1958	-5.2	44.2	74.4	0.23	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	47%
1959	-1.9	44.0	77.5	0.26	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	48%
1960	5.0	44.7	72.4	0.27	0.47	0.64	173	100%	173	173	100%	0.0	0%	0.0	0%	173	0	0	0	Oct 01	55%
1961	-7.6	43.9	75.8	0.23	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	0	0	Oct 01	78%
1962	-4.9	43.8	73.3	0.24	0.48	0.64	176	100%	176	176	100%	0.0	0%	0.0	0%	176	0	0	0	Oct 01	30%
1963	- 11.2	41.8	75.6	0.22	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	69%
1964	-2.0	43.8	75.3	0.24	0.49	0.64	179	100%	179	179	100%	0.0	0%	0.0	0%	179	0	0	0	Oct 01	5%
1965	12.7	44.3	68.8	0.30	0.48	0.60	177	100%	177	177	100%	0.0	0%	0.0	0%	177	0	0	0	Oct 01	17%
1966	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	176	100%	0.0	0%	0.0	0%	176	0	0	0	Oct 01	22%
1967	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	176	100%	0.0	0%	0.0	0%	176	0	0	0	Oct 01	22%
1968	- 16.1	43.5	76.9	0.20	0.48	0.64	176	100%	176	176	100%	0.0	0%	0.0	0%	176	0	0	0	Oct 01	31%
1969	-6.6	44.0	68.8	0.23	0.48	0.60	176	100%	176	176	100%	0.0	0%	0.0	0%	176	0	0	0	Oct 01	33%
1970	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	176	100%	0.0	0%	0.0	0%	176	0	0	0	Oct 01	22%
1971	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	176	100%	0.0	0%	0.0	0%	176	0	0	0	Oct 01	22%
1972	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	176	100%	0.0	0%	0.0	0%	176	0	0	0	Oct 01	22%
1973	-3.5	45.1	74.1	0.24	0.47	0.64	173	100%	173	173	100%	0.0	0%	0.0	0%	173	0	0	0	Oct 01	53%
1974	-10.8	43.0	73.2	0.22	0.46	0.64	169	100%	169	169	100%	0.0	0%	0.0	0%	169	0	0	0	Oct 01	94%
1975	-0.9	43.4	76.8	0.25	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	0	0	Oct 01	80%
1976	-12.2	44.5	73.8	0.21	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	63%
1977	-1.6	42.9	77.3	0.26	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	0	0	Oct 01	88%
1978	-2.2	42.6	75.0	0.25	0.46	0.64	168	100%	168	168	100%	0.0	0%	0.0	0%	168	0	0	0	Oct 01	98%
1979	-10.4	43.5	75.6	0.22	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	0	0	Oct 01	81%
1980	0.3	44.1	75.9	0.26	0.48	0.64	177	100%	177	177	100%	0.0	0%	0.0	0%	177	0	0	0	Oct 01	16%
1981	-9.5	42.2	76.9	0.22	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	67%
1982	-6.9	41.3	77.9	0.23	0.47	0.64	170	100%	170	170	100%	0.0	0%	0.0	0%	170	0	0	0	Oct 01	89%
1983	-4.5	45.9	77.3	0.25	0.47	0.64	173	100%	173	173	100%	0.0	0%	0.0	0%	173	0	0	0	Oct 01	52%
1984	-8.9	43.8	75.1	0.22	0.46	0.64	168	100%	168	168	100%	0.0	0%	0.0	0%	168	0	0	0	Oct 01	97%
1985	1.5	45.1	76.3	0.26	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	45%
1986	-1.0	44.8	77.4	0.25	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	0	0	Oct 01	77%
1987	-4.7	45.0	76.5	0.24	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	61%
1988	-5.0	44.3	79.1	0.24	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	39%
1989	-4.6	44.0	76.0	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	73%
1990	-3.8	44.3	73.1	0.24	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	44%
1991	0.0	46.3	75.8	0.26	0.49	0.64	180	100%	180	180	100%	0.0	0%	0.0	0%	180	0	0	0	Oct 01	3%
1992	4.7	43.9	73.2	0.27	0.47	0.64	173	100%	173	173	100%	0.0	0%	0.0	0%	173	0	0	0	Oct 01	58%
1993	-6.7	43.9	78.4	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	59%
1994	-14.9	42.7	77.0	0.20	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	0	0	Oct 01	83%
1995	-4.9	45.6	77.3	0.24	0.49	0.64	178	100%	178	178	100%	0.0	0%	0.0	0%	178	0	0	0	Oct 01	8%
1996	-9.2	43.6	72.7	0.22	0.46	0.64	169	100%	169	169	100%	0.0	0%	0.0	0%	169	0	0	0	Oct 01	92%
1997	-1.9	44.2	76.6	0.25	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	75%
1998	3.5	46.5	74.4	0.26	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	41%
1999	-7.1	45.8	79.8	0.22	0.49	0.64	177	100%	177	177	100%	0.0	0%	0.0	0%	177	0	0	0	Oct 01	9%
2000	-6.5	45.0	73.6	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	66%
2001	7.6	44.1	78.0	0.30	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	50%
2002	14.6	47.0	77.5	0.31	0.50	0.64	181	100%	181	181	100%	0.0	0%	0.0	0%	181	0	0	0	Oct 01	2%
2003	-6.6	43.4	74.9	0.24	0.47	0.64	170	100%	170	170	100%	0.0	0%	0.0	0%	170	0	0	0	Oct 01	91%

Scenario: 2

Source	<u>Max Pump Rate (qpm)</u>							
Hoosic River	r: 1,458							
Wel	l: 0							
<u>Storage</u>	Volume (Mga	al)						
Pond	1: 0							
<u>Plant</u>	gpm	MGD						
Average Demand	l: 321.6	0.46						
Peak Demand	1: 465.2	0.67						

Minimum Downstream Flow (csm) 0.00

NA

Output For Scenario 2																					
	Wet B	ulb Temper	atures		Plant ()emand				Plant	Consum	ption				Source P	roduction	Si	orage Po	ond	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	ver	We	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
2004	-8.7	44.6	74.4	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	72%
2005	-7.2	45.0	76.1	0.22	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	36%
2006	5.7	45.9	77.8	0.28	0.49	0.64	177	100%	177	177	100%	0.0	0%	0.0	0%	177	0	0	0	Oct 01	14%
2007	0.1	44.7	76.5	0.26	0.49	0.64	177	100%	177	177	100%	0.0	0%	0.0	0%	177	0	0	0	Oct 01	11%
2008	0.5	45.4	77.6	0.26	0.49	0.64	177	100%	177	177	100%	0.0	0%	0.0	0%	177	0	0	0	Oct 01	13%
2009	0.3	43.6	74.5	0.26	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	64%
Average	-2.0	44.3	75.0	0.25	0.48	0.64	174	100%	174	174	100%	0.0	0%	0.0	0%	174	0	0	0	Oct 01	
Minimum	-16.1	41.3	68.8	0.20	0.46	0.60	168	100%	168	168	100%	0.0	0%	0.0	0%	168	0	0	0	Oct 01	
Maximum	18.0	47.0	79.8	0.33	0.50	0.64	181	100%	181	181	100%	0.0	0%	0.0	0%	181	0	0	0	Oct 01	
<u>Worst-Case Year</u> 1978	-2.2	42.6	75.0	0.25	0.46	0.64	168	100%	168	168	100%	0.0	0%	0.0	0%	168.3	0.0	0	0	Oc† 01	98%
Π=	63																				
																				-	

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm| Graph1

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm, Graph2, 10/12/2010

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm, Graph3, 10/12/2010

Beaver Wood Energy Pownal LLC – Water Needs & Availability Study Streamflow, Groundwater, and Storage Mass Hydrograph Analysis Model Output

Scenario: 3

Source	Max Pump	Rate (gpm)	<u>Minimum Downstream Flow (csm)</u>
Hoosic River:	1,458		0.70
Well:	0		NA
<u>Storage</u>	Volume (M	gal)	
Pond:	12		
<u>Plant</u>	gpm	MGD	
Average Demand:	321.6	0.46	
Peak Demand	465.2	0.67	

				Output For Scenario 3																	
	Wet B	ulb Temper	atures		Plant Demand				Plant	Consum	nption				Source P	roduction	S	torage Po	ond		
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	W	ell	Stor	rade	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Fxreedenre
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mnal	%	Moal	%	Mnal	%	Mnal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
19/.7	1.7	44.6	76.6	0.28	0.4.7	0.64	172	100%	172	1/.9	87%	0.0	0%	23.0	13%	162	0	0	3	Sen 0/	31%
1941	12.5	44.0	77.5	0.20	0.47	0.64	172	81.91	1/.3	100	76%	0.0	0%	34.5	21.9	162	0	3	0	Sop 30	86%
1040	- 12.5	42.5	75.0	0.21	0.47	0.04	170	779/	14.5	10.2	70%	0.0	070	34.5	2470	140	0		0	0-1-01	00%
1949	3.0	40.2	75.0	0.27	0.49	0.64	170	11/6	157	102	15/6	0.0	0%	34.0	25%	140	0	0	0		92/0
1950	-6.8	43.5	f2.f	0.24	0.4 f	0.64	171	100%	171	141	83%	0.0	0%	29.6	17%	1/1	0	9	5	Sep 30	41%
1951	-2.0	44.8	12.4	0.24	0.4 f	0.64	173	100%	173	161	93%	0.0	0%	11.9	1%	176	0	9	4	Sep 30	17%
1952	-6.9	44.4	77.6	0.23	0.48	0.64	174	100%	174	143	82%	0.0	0%	31.0	18%	167	0	12	5	Sep 05	39%
1953	3.6	45.3	75.9	0.29	0.48	0.64	177	76%	134	100	75%	0.0	0%	34.1	25%	129	0	5	0	Sep 30	94%
1954	-2.9	44.4	74.6	0.24	0.48	0.64	174	91%	158	121	76%	0.0	0%	37.3	24%	170	0	0	0	Oct 01	72%
1955	-8.1	45.4	77.4	0.23	0.48	0.64	175	93%	163	136	84%	0.0	0%	26.4	16%	163	0	12	0	Sep 26	47%
1956	-9.0	42.3	73.5	0.22	0.46	0.64	169	93%	157	132	84%	0.0	0%	24.8	16%	157	0	12	0	Sep 23	61%
1957	-13.5	44.2	75.6	0.20	0.48	0.64	176	88%	155	121	78%	0.0	0%	34.2	22%	143	0	12	0	Jul 05	73%
1958	-5.2	44.2	74.4	0.23	0.48	0.64	174	92%	160	134	84%	0.0	0%	25.5	16%	172	0	0	0	Sep 30	53%
1959	-1.9	44.0	77.5	0.26	0.48	0.64	174	100%	173	125	72%	0.0	0%	48.2	28%	161	0	12	0	Sep 03	67%
1960	5.0	44.7	72.4	0.27	0.47	0.64	173	98%	170	157	92%	0.0	0%	13.2	8%	182	0	0	0	Sep 30	22%
1961	-7.6	43.9	75.8	0.23	0.47	0.64	171	100%	171	138	80%	0.0	0%	33.8	20%	166	0	12	0	Sep 05	45%
1962	-4.9	43.8	73.3	0.24	0.48	0.64	176	77%	134	98	73%	0.0	0%	36.0	27%	131	0	6	0	Sep 30	97%
1963	-11.2	41.8	75.6	0.22	0.47	0.64	172	79%	136	107	79%	0.0	0%	29.0	21%	137	0	3	0	Sep 30	89%
1964	-20	438	75 3	0.24	049	0.64	179	68%	122	99	81%	0.0	0%	23.0	19%	119	0	٦	0	Sen 30	95%
1965	12.7	44.3	68.8	0.30	0.48	0.60	177	66%	117	75	64%	0.0	0%	427	36%	129	0	0	0	Oct 01	98%
1966	18.0	443	68.8	0.33	0.48	0.60	176	98%	173	13/	77%	0.0	0%	39.2	23%	169	0	12	0	Sen 30	55%
1967	18.0	44.5	68.8	0.33	0.40	0.00	176	10.0%	175	165	01.9	0.0	0%	11.1	6%	175	0	7	3	Sop 30	1/.9/
1907	10.0	44.5	76.0	0.35	0.40	0.00	170	0.09/	170	100	74/0	0.0	0%	21.1	1/ 9/	1/0	0	7	0	Sep 30	14%
1966	- 10.1	43.5	10.9	0.20	0.40	0.64	170	00%	100	45.7	00%	0.0	0%	21.4	14/0	140	0	7	0	Sep 50	0.00
1969	-6.6	44.0	68.8	0.23	0.48	0.60	176	98%	172	15 f	91%	0.0	0%	14.9	9%	179	0	0	0	Sep 30	20%
1970	18.0	44.3	68.8	0.33	0.48	0.60	176	98%	173	135	78%	0.0	0%	38.0	22%	178	0	6	0	Sep 30	52%
1971	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	147	83%	0.0	0%	29.0	17%	176	0	12	3	Sep 12	33%
1972	18.0	44.3	68.8	0.33	0.48	0.60	176	99%	174	152	87%	0.0	0%	21.9	13%	162	0	12	0	Oct 01	30%
1973	-3.5	45.1	74.1	0.24	0.47	0.64	173	98%	170	155	91%	0.0	0%	15.6	9%	176	0	0	0	Sep 30	23%
1974	-10.8	43.0	73.2	0.22	0.46	0.64	169	96%	163	144	88%	0.0	0%	19.2	12%	169	0	5	0	Sep 30	38%
1975	-0.9	43.4	76.8	0.25	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	12	12	Oct 01	5%
1976	-12.2	44.5	73.8	0.21	0.47	0.64	172	100%	172	169	98%	0.0	0%	3.8	2%	172	0	12	10	Sep 26	9%
1977	-1.6	42.9	77.3	0.26	0.47	0.64	171	100%	171	162	95%	0.0	0%	8.8	5%	171	0	12	9	Sep 13	16%
1978	-2.2	42.6	75.0	0.25	0.46	0.64	168	98%	165	132	80%	0.0	0%	32.6	20%	153	0	12	0	Aug 09	63%
1979	-10.4	43.5	75.6	0.22	0.47	0.64	171	97%	166	128	77%	0.0	0%	38.8	23%	178	0	0	0	Oct 01	64%
1980	0.3	44.1	75.9	0.26	0.48	0.64	177	84%	149	115	77%	0.0	0%	33.7	23%	137	0	12	0	Jul 12	81%
1981	-9.5	42.2	76.9	0.22	0.47	0.64	172	92%	158	107	68%	0.0	0%	51.4	32%	170	0	0	0	Oc† 01	91%
1982	-6.9	41.3	77.9	0.23	0.47	0.64	170	92%	156	136	87%	0.0	0%	19.5	13%	14.4	0	12	0	Jul 29	48%
1983	-4.5	45.9	77.3	0.25	0.47	0.64	173	77%	134	108	81%	0.0	0%	26.1	19%	134	0	0	0	Oct 01	88%
1984	-8.9	43.8	75.1	0.22	0.46	0.64	168	83%	139	119	85%	0.0	0%	20.2	15%	139	0	0	0	Oct 01	75%
1985	1.5	45.1	76.3	0.26	0.48	0.64	174	99%	172	116	68%	0.0	0%	55.1	32%	180	0	0	0	Sep 30	80%
1986	-1.0	44.8	77.4	0.25	0.47	0.64	171	100%	171	167	97%	0.0	0%	4.3	3%	175	0	9	10	Sep 30	11%
1987	-4.7	45.0	76.5	0.24	0.47	0.64	172	100%	172	139	80%	0.0	0%	33.9	20%	172	0	12	0	Sep 16	44%
1988	-5.0	44.3	79.1	0,24	0.48	0.64	174	99%	173	145	84%	0.0	0%	28.2	16%	171	0	12	0	Sep 18	36%
1989	-4.6	44.0	76.0	0.23	0.47	0.64	172	100%	172	161	94%	0.0	0%	11 0	6%	173	ů n	11	7	Sep 30	19%
1990	-3.8	443	73.1	0.24	0.48	0.64	174	100%	174	153	88%	0.0	0%	213	12%	173	0	12	1	Sep 27	28%
1001	0.0	463	75.9	0.24	0.40	0.67	180	92%	166	122	80%	0.0	0%	325	20%	167	0	11	0	Sep 30	58%
1992	1.7	/.30	73.0	0.20	0.47	0.67	172	10.0%	173	177	779/	0.0	0%	307.	23%	165	0	12	2	Aug 20	50%
1002	47	(,20	791	0.27	0/7	0.04	170	800/0	150	100	710/	0.0	0%	1,20	20%	16.0	^	12 E	^	Sop 20	8/ %
1007	-0.7	43.7	70.4	0.20	0.47	0.04	174	10.0%	174	107	0.00/	0.0	0.00	+ J.0	200/	100	~	10	0	Jep 30	U4/0 E/00/
1994	- 14.9	42.1	11.0	0.20	0.41	0.04	170	0/9/	15.0	110	20%	0.0	0%	24.1	20%	107	0	12	0	Aug 19	50% 27%
1995	-4.9	45.0	11.3	0.24	0.49	0.64	178	84%	150	119	19%	0.0	0%	31.5	21%	142	, U	у ,	U	Sep 30	11%
1996	-9.2	43.6	+2.+	0.22	0.46	0.64	169	95%	161	14 f	91%	0.0	0%	14.1	9%	1/3	0	0	0	Uct 01	34%
1997	-1.9	44.2	16.6	0.25	0.47	0.64	172	93%	159	123	+1%	0.0	0%	36.5	23%	149	0	12	0	Jul 08	10%
1998	3.5	46.5	74.4	0.26	0.48	0.64	174	85%	148	125	84%	0.0	0%	23.8	16%	147	0	2	0	Sep 30	69%
1999	-7.1	45.8	79.8	0.22	0.49	0.64	177	86%	152	111	73%	0.0	0%	41.3	27%	164	0	0	0	Oct 01	83%
2000	-6.5	45.0	73.6	0.23	0.47	0.64	172	100%	172	170	99%	0.0	0%	2.2	1%	172	0	12	10	Feb 14	6%
2001	7.6	44.1	78.0	0.30	0.48	0.64	174	96%	167	141	85%	0.0	0%	25.8	15%	166	0	12	0	Sep 29	42%
2002	14.6	47.0	77.5	0.31	0.50	0.64	181	93%	169	118	70%	0.0	0%	50.6	30%	165	0	11	0	Sep 30	78%
2003	-6.6	43.4	74.9	0.24	0.47	0.64	170	100%	170	154	91%	0.0	0%	15.3	9%	174	0	8	6	Sep 30	25%

Scenario: 3

Source	Max Pump	Rate (gpm)
Hoosic Rive	er: 1,458	
We	ll: 0	
Storage	Volume (Mo	gal)
Por	nd: 12	
Plant	gpm	MGD
Average Demar	ıd: 321.6	0.46
Peak Demar	nd: 465.2	0.67

Minimum Downstream Flow (csm) 0.70

NA

	Output For Scenario 3																				
	Wet B	ulb Tempera	atures		Plant ()emand				Plant	Consum	ption				Source P	roduction	S	rorage Po	ond	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	Ri	ver	W	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
2004	-8.7	44.6	74.4	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	12	12	Oct 01	3%
2005	-7.2	45.0	76.1	0.22	0.48	0.64	174	87%	152	128	84%	0.0	0%	24.8	16%	147	0	12	0	Jul 18	66%
2006	5.7	45.9	77.8	0.28	0.49	0.64	177	100%	177	165	93%	0.0	0%	12.0	7%	183	0	6	З	Sep 30	13%
2007	0.1	44.7	76.5	0.26	0.49	0.64	177	100%	177	153	86%	0.0	0%	24.7	14%	170	0	12	4	Sep 13	27%
2008	0.5	45.4	77.6	0.26	0.49	0.64	177	100%	177	169	96%	0.0	0%	7.9	4%	184	0	4	0	Sep 30	8%
2009	0.3	43.6	74.5	0.26	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.5	0%	172	0	12	12	Sep 27	2%
Average	-2.0	44.3	75.0	0.25	0.48	0.64	174	93%	162	136	84%	0.0	0%	25.9	16%	162	0	7	2	Jul 07	
Minimum	-16.1	41.3	68.8	0.20	0.46	0.60	168	66%	117	75	64%	0.0	0%	0.0	0%	119	0	0	0	Oct 01	
Maximum	18.0	47.0	79.8	0.33	0.50	0.64	181	100%	177	172	100%	0.0	0%	55.1	36%	184	0	12	12	Sep 30	
<u>Worst-Case Year</u> 1965	12.7	44.3	68.8	0.30	0.48	0.60	177	66%	117	75	64%	0.0	0%	42.7	36%	129.1	0.0	0	0	Oc† 01	98%
n=	63																				

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm| Graph1

10/12/2010

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm, Graph2, 10/12/2010

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm, Graph3, 10/12/2010

Beaver Wood Energy Pownal LLC – Water Needs & Availability Study Streamflow, Groundwater, and Storage Mass Hydrograph Analysis Model Output

Scenario: 4

Source	Max Pump	Rate (gpm)	<u>Minimum Downstream Flow (csm)</u>
Hoosic River:	1,458		0.70
Well:	0		NA
<u>Storage</u>	Volume (Mg	<u>jal)</u>	
Pond:	84		
<u>Plant</u>	gpm	MGD	
Average Demand:	321.6	0.46	
Peak Demand	465.2	0.67	

				Output For Scenario 4																	
	Wet B	ulb Temper	atures		Plant I)emand				Plant	Consum	ption				Source P	Production	S	torage Po	ond	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	W	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
1947	4.7	44.6	76.6	0.28	0.47	0.64	172	100%	172	149	87%	0.0	0%	23.0	13%	162	0	0	75	Sep 04	31%
1948	-12.5	42.3	77.5	0.21	0.47	0.64	171	100%	171	109	64%	0.0	0%	62.4	36%	153	0	75	57	Sep 30	86%
1949	3.8	46.2	75.8	0.27	0.49	0.64	178	100%	178	102	57%	0.0	0%	76.0	43%	177	0	57	41	Sep 30	92%
1950	-6.8	43.5	72.7	0.24	0.47	0.64	171	100%	171	141	83%	0.0	0%	29.6	17%	196	0	56	52	Sep 30	41%
1951	-2.0	44.8	72.4	0.24	0.47	0.64	173	100%	173	161	93%	0.0	0%	11.9	7%	176	0	81	76	Sep 30	17%
1952	-6.9	44.4	77.6	0.23	0.48	0.64	174	100%	174	143	82%	0.0	0%	31.0	18%	167	0	84	77	Sen 05	39%
1953	36	453	75.9	0.29	0.48	0.64	177	100%	177	100	57%	0.0	0%	76.5	43%	14.0	0	77	41	Sen 30	94%
1954	-2.9	44.4	74.6	0.24	0.48	0.64	174	100%	174	121	69%	0.0	0%	53.5	31%	217	0	41	27	Sen 30	72%
1955	-8.1	45.4	77.6	0.23	0.48	0.64	175	100%	175	136	78%	0.0	0%	39.0	22%	175	0	84	59	Sen 26	47%
1956	-9.0	42.3	73.5	0.22	0.46	0.64	169	100%	169	132	78%	0.0	0%	36.7	22%	169	0	84	60	Sen 30	61%
1957	-13.5	44.2	75.6	0.20	0 4 8	0.64	176	100%	176	121	68%	0.0	0%	55.9	32%	143	0	84	50	Jul 05	73%
1958	-5.2	44.2	74.4	0.23	0.48	0.64	176	100%	17/	13/	77%	0.0	0%	39.5	23%	207	0	50	36	Sen 30	53%
1959	-19	44.2	77.5	0.25	0.40	0.64	174	100%	174	125	72%	0.0	0%	/.85	28%	161	0	8/.	72	Sen 03	67%
1950	5.0	44.0	72.6	0.20	0.40	0.64	173	100%	173	157	01%	0.0	0%	16.2	0%	185	0	72	69	Sop 30	22%
1961	7.6	/20	72.4	0.27	0.47	0.04	173	100%	175	120	90%	0.0	0%	22.01	20%	165	0	0/	72	Sep DE	1 5 %
1962	- 7.0	43.9	73.0	0.25	0.47	0.04	176	100%	176	80	56%	0.0	0%	33.0	20%	138	0	78	38	Sop 30	43%
1902	-4.7	4 J.0	75.5	0.24	0.40	0.04	170	100%	170	107	62%	0.0	0%	617	20%	171	0	/0	24	Sep 30	91%
1905	- 11.2	41.0	75.0	0.22	0.47	0.04	172	100%	172	00	02/0	0.0	0%	70.7	10%	171	0	41	20	Sep 30	07/0
1964	-2.0	45.0	15.5	0.24	0.49	0.64	179	100%	179	99	1.2%	0.0	0%	102.0	43/0	202	0	40	20	Sep 30	95% 00%
1905	12.7	44.5	00.0	0.50	0.40	0.00	177	100%	177	12/	42/0	0.0	0%	102.0	2/ 9/	202	0	52	50	Sep 30	70%
1965	10.0	44.5	00.0 40.0	0.33	0.40	0.60	170	100%	170	124	10%	0.0	0%	41.9	24% 6%	195	0	27	75	Sep 30	1/ %
1907	10.0	44.5	76.0	0.33	0.40	0.00	170	100%	170	10.5	74/0	0.0	0%	11.1	0/0	1/ 0	0	70	7.5 F.1	Sep 30	1470
1966	- 10.1	43.5	10.9	0.20	0.40	0.04	170	100%	170	100	10%	0.0	0%	42.0	109/	202	0	79 F1	21	Sep 30	20%
1969	-0.0	44.0	68.8	0.23	0.48	0.60	175	100%	176	157	90%	0.0	0%	18.1	10%	203	0	51	48	Sep 30	20%
1970	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	135	11%	0.0	0%	40.9	23%	181	0	78	69	Sep 30	52%
1971	18.0	44.3	68.8	0.33	0.48	0.60	175	100%	176	14 1	83%	0.0	0%	29.0	17%	170	0	84	75	Sep 12	33%
1972	18.0	44.3	58.8	0.33	0.48	0.60	175	100%	170	152	81%	0.0	0%	23.6	13%	162	0	84	10		30%
1973	-3.5	45.1	74.1	0.24	0.47	0.64	173	100%	173	155	89%	0.0	0%	18.0	11%	180	0	70	67	Sep 30	23%
1974	-10.8	43.0	+3.2	0.22	0.46	0.64	169	100%	169	144	85%	0.0	0%	25.6	15%	176	0	11	66	Sep 30	38%
1975	-0.9	43.4	75.8	0.25	0.47	0.64	1/1	100%	171	1/1	100%	0.0	0%	0.0	0%	171	0	84	84	Ucf 01	5%
1976	- IZ.Z	44.5	13.8	0.21	0.47	0.64	172	100%	172	169	98%	0.0	0%	3.8	2%	172	0	84	82	Sep 26	9%
1977	-1.6	42.9	11.3	0.26	0.47	0.64	171	100%	171	162	95%	0.0	0%	8.8	5%	171	0	84	81	Sep 13	16%
1978	-2.2	42.6	<i>1</i> 5.0	0.25	0.46	0.64	168	100%	168	132	18%	0.0	0%	36.2	22%	153	0	84	68	Aug 09	63%
1979	- 10.4	43.5	15.0	0.22	0.47	0.64	171	100%	171	128	15%	0.0	0%	43.0	25%	187	0	68	66	Sep 30	64%
1980	0.3	44.1	75.9	0.26	0.48	0.64	177	100%	177	115	65%	0.0	0%	61.5	35%	137	0	84	44	Jul 12	81%
1981	-9.5	42.2	76.9	0.22	0.47	0.64	172	100%	172	107	62%	0.0	0%	65.I	38%	209	0	44	35	Sep 30	91%
1982	-6.9	41.3	11.9	0.23	0.47	0.64	170	100%	170	136	80%	0.0	0%	33.6	20%	147	0	81	58	Sep 30	48%
1983	-4.5	45.9	<i>HI</i> .3	0.25	0.4 f	0.64	173	100%	173	108	62%	0.0	0%	65.4	38%	163	0	58	43	Sep 30	88%
1984	-8.9	43.8	15.1	0.22	0.46	0.64	168	100%	168	119	11%	0.0	0%	49.2	29%	179	Ű	48	55	Sep 30	15%
1985	1.5	45.1	16.3	0.26	0.48	0.64	1#4	100%	1#4	116	61%	0.0	0%	51.3	33%	197	0	58	56	Sep 30	80%
1986	-1.0	44.8	<i>tt.</i> 4	0.25	0.47	0.64	1/1	100%	1/1	167	91%	0.0	0%	4.3	3%	1/5	0	81	82	Sep 30	11%
1987	-4.1	45.0	10.5	0.24	0.47	0.64	172	100%	172	139	80%	0.0	0%	33.9	20%	172	Ű	84	fZ	Sep 16	44%
1988	-5.0	44.3	79.1	0.24	0.48	0.64	174	100%	174	145	83%	0.0	0%	29.5	11%	1/3	0	84	<i>f</i> 1	Sep 18	36%
1989	-4.6	44.0	76.0	0.23	0.4 /	0.64	172	100%	172	161	94%	0.0	0%	11.0	6%	173	0	83	79	Sep 30	19%
1990	-3.8	44.3	+3.1	0.24	0.48	0.64	174	100%	174	153	88%	0.0	0%	21.3	12%	173	0	84	13	Sep 27	28%
1991	0.0	46.3	75.8	0.26	0.49	0.64	180	100%	180	133	74%	0.0	0%	47.2	26%	176	0	83	57	Sep 30	58%
1992	4.7	43.9	+3.2	0.27	0.47	0.64	173	100%	173	133	+ + *%	0.0	0%	39.4	23%	171	0	f8	14	Sep 30	59%
1993	-6.7	43.9	18.4	0.23	0.47	0.64	172	100%	172	109	63%	0.0	0%	63.9	37%	161	0	<i>f</i> 7	52	Sep 30	84%
1994	-14.9	42.7	77.0	0.20	0.47	0.64	171	100%	171	136	80%	0.0	0%	35.0	20%	186	0	65	67	Sep 30	50%
1995	-4.9	45.6	77.3	0.24	0.49	0.64	178	100%	178	119	67%	0.0	0%	59.1	33%	142	0	80	44	Sep 30	77%
1996	-9.2	43.6	72.7	0.22	0.46	0.64	169	100%	169	147	87%	0.0	0%	22.9	13%	209	0	44	42	Sep 30	34%
1997	-1.9	44.2	76.6	0.25	0.47	0.64	172	100%	172	123	72%	0.0	0%	48.7	28%	149	0	84	60	Jul 08	70%
1998	3.5	46.5	74.4	0.26	0.48	0.64	174	100%	174	125	72%	0.0	0%	49.6	28%	161	0	61	48	Sep 30	69%
1999	-7.1	45.8	79.8	0.22	0.49	0.64	177	100%	177	111	62%	0.0	0%	66.9	38%	203	0	48	45	Sep 30	83%
2000	-6.5	45.0	73.6	0.23	0.47	0.64	172	100%	172	170	99%	0.0	0%	2.2	1%	182	0	74	76	Sep 30	6%
2001	7.6	44.1	78.0	0.30	0.48	0.64	174	100%	174	141	81%	0.0	0%	32.4	19%	167	0	84	65	Jul 28	42%
2002	14.6	47.0	77.5	0.31	0.50	0.64	181	100%	181	118	65%	0.0	0%	62.9	35%	172	0	77	60	Sep 30	78%
2003	-6.6	43.4	74.9	0.24	0.47	0.64	170	100%	170	154	91%	0.0	0%	15.3	9%	186	0	68	68	Sep 30	25%

Scenario: 4

Source		Max Pump) Rate (gpm)
Hoosic Ri	ver:	1,458	
٧	/ell:	0	
Storage		Volume (M	1gal)
P	ond:	84	
Plant		gpm	MGD
Average Dem	and:	321.6	0.46
Peak Dem	and:	465.2	0.67

Minimum Downstream Flow (csm) 0.70

NA

Output For Scenario 4																					
	Wet B	ulb Temper	atures		Plant (Demand				Plant	Consum	ption				Source P	roduction	Si	torage Po	ond	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	Ri	ver	W	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
2004	-8.7	44.6	74.4	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	84	84	Oct 01	3%
2005	-7.2	45.0	76.1	0.22	0.48	0.64	174	100%	174	128	73%	0.0	0%	46.7	27%	147	0	84	50	Jul 18	66%
2006	5.7	45.9	77.8	0.28	0.49	0.64	177	100%	177	165	93%	0.0	0%	12.0	7%	205	0	56	53	Sep 30	13%
2007	0.1	44.7	76.5	0.26	0.49	0.64	177	100%	177	153	86%	0.0	0%	24.7	14%	170	0	84	76	Sep 13	27%
2008	0.5	45.4	77.6	0.26	0.49	0.64	177	100%	177	169	95%	0.0	0%	8.6	5%	185	0	76	71	Sep 30	8%
2009	0.3	43.6	74.5	0.26	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.5	0%	172	0	84	84	Sep 27	2%
Average	-2.0	44.3	75.0	0.25	0.48	0.64	174	100%	174	136	78%	0.0	0%	37.6	22%	174	0	71	59	Sep 02	
Minimum	-16.1	41.3	68.8	0.20	0.46	0.60	168	100%	168	75	42%	0.0	0%	0.0	0%	137	0	0	1	Oct 01	
Maximum	18.0	47.0	79.8	0.33	0.50	0.64	181	100%	181	172	100%	0.0	0%	102.0	58%	217	0	84	84	Sep 30	
<u>Worst-Case Year</u> 1965	12.7	44.3	68.8	0.30	0.48	0.60	177	100%	177	75	42%	0.0	0%	102.0	58%	202.2	0.0	32	1	Sep 30	98%
N=	63																				

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm| Graph1

10/12/2010

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm, Graph2, 10/12/2010

Beaver Wood Energy Pownal LLC – Water Needs & Availability Study Streamflow, Groundwater, and Storage Mass Hydrograph Analysis Model Output

Scenario: 5

Source	Max Pump	Rate (gpm)	<u>Minimum Downstream Flow (csm)</u>
Hoosic River:	1,458		0.70
Well:	500		NA
<u>Storage</u>	Volume (Mg	<u>jal)</u>	
Pond:	0		
<u>Plant</u>	gpm	MGD	
Average Demand:	321.6	0.46	
Peak Demand	465.2	0.67	

				Output For Scenario 5																	
	Wet B	ulb Temper	atures		Plant I)emand				Plant	t Consum	nption				Source P	roduction	S	torage Po	ond	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	W	ell	Sto	rage	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
1947	4.7	44.6	76.6	0.28	0.47	0.64	172	100%	172	149	87%	23.0	13%	0.0	0%	149	23	0	0	Oct 01	31%
1948	-12.5	42.3	77.5	0.21	0.47	0.64	171	100%	171	109	64%	62.4	36%	0.0	0%	109	62	0	0	Oct 01	86%
1949	3.8	46.2	75.8	0.27	0.49	0.64	178	100%	178	102	57%	76.0	43%	0.0	0%	102	76	0	0	Oct 01	92%
1950	-6.8	43.5	72.7	0.24	0.47	0.64	171	100%	171	141	83%	29.6	17%	0.0	0%	141	30	0	0	Oct 01	41%
1951	-2.0	44.8	72.4	0.24	0.47	0.64	173	100%	173	161	93%	11.9	7%	0.0	0%	161	12	0	0	Oct 01	17%
1952	-6.9	44.4	77.6	0.23	0.48	0.64	174	100%	174	143	82%	31.0	18%	0.0	0%	143	31	0	0	Oct 01	39%
1952	3.6	453	75.9	0.29	0.48	0.64	177	100%	177	100	57%	76.5	43%	0.0	0%	100	77	0	0	Oct 01	94%
1954	-2.9	46.6	74.6	0.24	0.48	0.64	174	100%	174	121	69%	53.5	31%	0.0	0%	121	53	0	0	Oct 01	72%
1955	-8.1	45.4	77.6	0.23	0.48	0.64	175	100%	175	136	78%	39.0	22%	0.0	0%	136	39	0	0	Oct 01	47%
1956	-9.0	423	735	0.22	0.46	0.64	169	100%	169	132	78%	36.7	22%	0.0	0%	132	37	0	0	Oct 01	61%
1957	-13.5	44.2	75.6	0.20	0.48	0.64	176	10.0%	176	121	68%	55.9	32%	0.0	0%	121	56	0	0	Oct 01	73%
1958	-5.2	44.2	74.4	0.23	0.48	0.64	17/	100%	176	13/	77%	39.5	23%	0.0	0%	13/	30	0	0	Oct 01	53%
1959	-19	44.2	775	0.25	0.40	0.64	174	100%	174	125	72%	685	28%	0.0	0%	125	//8	0	0	Oct 01	67%
1950	5.0	44.0	72.6	0.27	0.40	0.64	173	100%	173	157	01%	16.2	0%	0.0	0%	157	16	0	0	Oct 01	22%
1961	7.6	/20	72.4	0.27	0.47	0.04	173	100%	173	120	90%	22.0	20%	0.0	0%	120	2/	0	0	0c+ 01	1 5 %
1901	- 1.0	43.7	75.0	0.2.5	0.47	0.04	171	100%	171	001	00% E4%	33.0	20%	0.0	0%	001	77	0	0	0ct 01	43%
1902	-4.7	43.0	75.5	0.24	0.40	0.04	170	100%	170	107	(28/	11.2	30%	0.0	0%	70		0	0	0+ 01	21/0
1965	-11.2	41.0	75.0	0.22	0.47	0.04	172	100%	172	107	02/0	70.7	20%	0.0	0%	107	00	0	0	01 01	07/0
1964	-2.0	45.0	15.5	0.24	0.49	0.64	179	100%	179	99	22%	102.0	40%	0.0	0%	77	10.2	0	0	01 01	95% 00%
1965	12.7	44.5	00.0	0.50	0.40	0.60	177	100%	177	10	42/6	102.0	20%	0.0	0%	75	102	0	0		90%
1960	10.0	44.5	00.0	0.55	0.40	0.60	170	100%	170	104	10/%	41.9	24%	0.0	0%	104	42	0	0	01 01	1/9/
1967	10.0	44.5	00.0	0.55	0.40	0.60	170	100%	170	100	74%	11.1	0/0	0.0	0%	100	11	0	0		14/0
1968	- 16.1	43.5	10.9	0.20	0.48	0.64	175	100%	176	155	10%	42.3	24%	0.0	0%	133	42	0	0		50%
1969	-6.6	44.0	68.8	0.23	0.48	0.60	176	100%	176	15 f	90%	18.1	10%	0.0	0%	157	18	0	0	Ucf 01	20%
1970	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	135	11%	40.9	23%	0.0	0%	135	41	0	0	Uct 01	52%
1971	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	14 f	83%	29.0	17%	0.0	0%	147	29	0	0	Uct 01	33%
1972	18.0	44.3	68.8	0.33	0.48	0.60	175	100%	176	152	81%	23.6	13%	0.0	0%	152	24	0	0	Uct 01	30%
1973	-3.5	45.1	74.1	0.24	0.4 f	0.64	173	100%	173	155	89%	18.6	11%	0.0	0%	155	19	0	0	Ucf 01	23%
1974	-10.8	43.0	13.2	0.22	0.46	0.64	169	100%	169	144	85%	25.6	15%	0.0	0%	144	26	0	0	Uct 01	38%
1975	-0.9	43.4	76.8	0.25	0.47	0.64	1/1	100%	1/1	1/1	100%	0.0	0%	0.0	0%	1/1	0	0	0	Oct 01	5%
1976	-1Z.Z	44.5	13.8	0.21	0.4 f	0.64	172	100%	172	169	98%	3.8	2%	0.0	0%	169	4	0	0	Uct 01	9%
1977	-1.6	42.9	11.3	0.26	0.4 f	0.64	171	100%	171	162	95%	8.8	5%	0.0	0%	162	9	0	0	Ucf 01	16%
1978	-2.2	42.6	75.0	0.25	0.46	0.64	168	100%	168	132	18%	36.2	22%	0.0	0%	132	36	0	0	Oct 01	63%
1979	-10.4	43.5	15.6	0.22	0.4 f	0.64	171	100%	171	128	15%	43.6	25%	0.0	0%	128	44	0	0	Uct 01	64%
1980	0.3	44.1	15.9	0.26	0.48	0.64	177	100%	177	115	65%	61.5	35%	0.0	0%	115	62	0	0	Oct 01	81%
1981	-9.5	42.2	76.9	0.22	0.47	0.64	172	100%	172	10 7	62%	65.1	38%	0.0	0%	10 7	65	0	0	Ucf 01	91%
1982	-6.9	41.3	11.9	0.23	0.4 f	0.64	170	100%	170	136	80%	33.6	20%	0.0	0%	136	34	0	0	Ucf 01	48%
1983	-4.5	45.9	11.3	0.25	0.47	0.64	1/3	100%	173	108	62%	65.4	38%	0.0	0%	108	65	0	0	Oct 01	88%
1984	-8.9	43.8	15.1	0.22	0.46	0.64	168	100%	168	119	t1%	49.2	29%	0.0	0%	119	49	Ű	Ű	UCT U1	15%
1985	1.5	45.1	16.3	0.26	0.48	0.64	1#4	100%	174	116	b #%	51.3	33%	0.0	0%	116	51	0	0	Uct 01	80%
1986	-1.0	44.8	<i>tt.</i> 4	0.25	0.47	0.64	1/1	100%	1/1	16 <i>†</i>	91%	4.3	3%	0.0	0%	16 <i>†</i>	4	0	0	Uct 01	11%
1987	-4.1	45.0	10.5	0.24	0.47	0.64	172	100%	172	139	80%	33.9	20%	0.0	0%	139	34	Ű	Ű	UCT U1	44%
1988	-5.0	44.3	79.1	0.24	0.48	0.64	174	100%	174	145	83%	29.5	17%	0.0	0%	145	29	0	0	Uct 01	36%
1989	-4.6	44.0	76.0	0.23	0.4 f	0.64	172	100%	172	161	94%	11.0	6%	0.0	0%	161	11	0	0	Oct 01	19%
1990	-3.8	44.3	73.1	0.24	0.48	0.64	174	100%	174	153	88%	21.3	12%	0.0	0%	153	21	0	0	Oct 01	28%
1991	0.0	46.3	75.8	0.26	0.49	0.64	180	100%	180	133	14%	47.2	26%	0.0	0%	133	41	0	0	Oct 01	58%
1992	4.1	43.9	13.2	0.27	0.4 f	0.64	1/3	100%	173	133	+ + %	39.4	23%	0.0	0%	133	39	0	0	Uct 01	59%
1993	-6.7	43.9	18.4	0.23	0.47	0.64	172	100%	172	109	63%	63.9	37%	0.0	0%	109	64	0	0	Uct 01	84%
1994	-14.9	42.7	#7.0	0.20	0.47	0.64	171	100%	171	136	80%	35.0	20%	0.0	0%	136	35	0	0	Uct 01	50%
1995	-4.9	45.6	+7.3	0.24	0.49	0.64	178	100%	178	119	67%	59.1	33%	0.0	0%	119	59	0	0	Uct 01	+ + %
1996	-9.2	43.6	72.7	0.22	0.46	0.64	169	100%	169	147	87%	22.9	13%	0.0	0%	147	23	0	0	Oct 01	34%
1997	-1.9	44.2	76.6	0.25	0.47	0.64	172	100%	172	123	72%	48.7	28%	0.0	0%	123	49	0	0	Oct 01	70%
1998	3.5	46.5	74.4	0.26	0.48	0.64	174	100%	174	125	72%	49.6	28%	0.0	0%	125	50	0	0	Oct 01	69%
1999	-7.1	45.8	79.8	0.22	0.49	0.64	177	100%	177	111	62%	66.9	38%	0.0	0%	111	67	0	0	Oct 01	83%
2000	-6.5	45.0	73.6	0.23	0.47	0.64	172	100%	172	170	99%	2.2	1%	0.0	0%	170	2	0	0	Oct 01	6%
2001	7.6	44.1	78.0	0.30	0.48	0.64	174	100%	174	141	81%	32.4	19%	0.0	0%	141	32	0	0	Oct 01	42%
2002	14.6	47.0	77.5	0.31	0.50	0.64	181	100%	181	118	65%	62.9	35%	0.0	0%	118	63	0	0	Oc† 01	78%
2003	-6.6	43.4	74.9	0.24	0.47	0.64	170	100%	170	154	91%	15.3	9%	0.0	0%	154	15	0	0	Oct 01	25%

Scenario: 5

Source	Max Pump F	Rate (gpm)
Hoosic River:	1,458	
Well:	500	
<u>Storage</u>	Volume (Mg	al)
Pond:	0	
<u>Plant</u>	gpm	MGD
Average Demand:	321.6	0.46
Peak Demand:	465.2	0.67

Minimum Downstream Flow (csm) 0.70

NA

Output For Scenario 5																					
	Wet B	ulb Temper	atures		Plant ()emand				Plant	Consum	ption				Source P	roduction	Si	torage Po	ond	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	W	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
2004	-8.7	44.6	74.4	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	3%
2005	-7.2	45.0	76.1	0.22	0.48	0.64	174	100%	174	128	73%	46.7	27%	0.0	0%	128	47	0	0	Oct 01	66%
2006	5.7	45.9	77.8	0.28	0.49	0.64	177	100%	177	165	93%	12.0	7%	0.0	0%	165	12	0	0	Oct 01	13%
2007	0.1	44.7	76.5	0.26	0.49	0.64	177	100%	177	153	86%	24.7	14%	0.0	0%	153	25	0	0	Oct 01	27%
2008	0.5	45.4	77.6	0.26	0.49	0.64	177	100%	177	169	95%	8.6	5%	0.0	0%	169	9	0	0	Oct 01	8%
2009	0.3	43.6	74.5	0.26	0.47	0.64	172	100%	172	172	100%	0.5	0%	0.0	0%	172	0	0	0	Oct 01	2%
Average	-2.0	44.3	75.0	0.25	0.48	0.64	174	100%	174	136	78%	37.6	22%	0.0	0%	136	38	0	0	Oct 01	
Minimum	-16.1	41.3	68.8	0.20	0.46	0.60	168	100%	168	75	42%	0.0	0%	0.0	0%	75	0	0	0	Oc† 01	
Maximum	18.0	47.0	79.8	0.33	0.50	0.64	181	100%	181	172	100%	102.0	58%	0.0	0%	172	102	0	0	Oc† 01	
<u>Worst-Case Year</u> 1965	12.7	44.3	68.8	0.30	0.48	0.60	177	100%	177	75	42%	102.0	58%	0.0	0%	74.7	102.0	0	0	Oc† 01	98%
n=	63																				

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm| Graph1

10/12/2010

8/30 7/31 -----River Withdrawal 6/30 Beaver Wood Energy Pownal LLC: Mass Balance Hydrograph 5/31 Scenario #5, Worst-Case Year 4/30 - River Usage - Plant 3/31 Date 3/1 1/30 Total Plant Usage 12/31 11/30 10/31 10/1 0.0 0.5 0.1 0.7 0.6 0.J 0.4 0.2 Flow (MGD)

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm, Graph2, 10/12/2010

Beaver Wood Energy Pownal LLC – Water Needs & Availability Study Streamflow, Groundwater, and Storage Mass Hydrograph Analysis Model Output

Scenario: 6

Source	Max Pump	Rate (gpm)	<u>Minimum Downstream Flow (csm)</u>
Hoosic River:	1,458		0.70
Well:	39		NA
<u>Storage</u>	Volume (M	<u>gal)</u>	
Pond:	0		
<u>Plant</u>	gpm	MGD	
Average Demand:	321.6	0.46	
Peak Demand	465.2	0.67	

	Output For Scenario 6																				
Wet Bulb Temperatures			atures		Plant [Demand		Plant Consumption								Source P	roduction	Storage Pond			
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	We	-	Sto	але	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Pr	nd nd	Total	Total	Volume	Volume	Refill	Evreedence
100	F	F	F	мбр	мбр	мбр	Mgal	Demand	Mgal	Mnal	%	Mnal	%	Mnal	%	Mnal	Mnal	(Mnal)	(Mnal)	Date	(Percentile)
10/.7	. 7		76.6	0.28	0.4.7	0.64	172	88%	151	1/. 9	98%	27	29/	0.0	0%	1/.9	2	0	0	Oct 01	31%
10/ 9	4.7 12 E	44.0	70.0	0.20	0.47	0.04	172	60%	114	147	0/9/	2.4	69/	0.0	0%	147	7	0	0	0c+ 01	94.9/
1940	- 12.5	42.5	77.0	0.21	0.47	0.04	171	00%	110	10.9	74%	1.2	7.0/	0.0	0%	10.9	,	0	0		00%
1949	3.8	46.2	15.8	0.27	0.49	0.64	178	62%	110	102	93%	8.0	1%	0.0	0%	102	8	0	0		92%
1950	-6.8	43.5	12.1	0.24	0.47	0.64	171	85%	144	141	98%	3.3	2%	0.0	0%	141	3	0	0	Uct 01	41%
1951	-2.0	44.8	f2.4	0.24	0.4 f	0.64	173	94%	162	161	99%	1.3	1%	0.0	0%	161	1	0	0	Uct 01	17%
1952	-6.9	44.4	77.6	0.23	0.48	0.64	174	84%	146	143	98%	3.1	2%	0.0	0%	143	3	0	0	Oct 01	39%
1953	3.6	45.3	75.9	0.29	0.48	0.64	177	61%	108	100	93%	8.1	7%	0.0	0%	100	8	0	0	Oct 01	94%
1954	-2.9	44.4	74.6	0.24	0.48	0.64	174	73%	127	121	95%	5.9	5%	0.0	0%	121	6	0	0	Oct 01	72%
1955	-8.1	45.4	77.4	0.23	0.48	0.64	175	80%	140	136	97%	3.8	3%	0.0	0%	136	4	0	0	Oct 01	47%
1956	-9.0	42.3	73.5	0.22	0.46	0.64	169	80%	136	132	97%	3.7	3%	0.0	0%	132	4	0	0	Oct 01	61%
1957	-13.5	44.2	75.6	0.20	0.48	0.64	176	71%	126	121	96%	5.6	4%	0.0	0%	121	6	0	0	Oc† 01	73%
1958	-5.2	44.2	74.4	0.23	0.48	0.64	174	80%	139	134	97%	4.3	3%	0.0	0%	134	4	0	0	Oct 01	53%
1959	-1.9	44.0	77.5	0.26	0.48	0.64	174	75%	130	125	96%	4.8	4%	0.0	0%	125	5	0	0	Oct 01	67%
1960	5.0	44.7	72.4	0.27	0.47	0.64	173	92%	158	157	99%	1.6	1%	0.0	0%	157	2	0	0	Oct 01	22%
1961	-7.6	43.9	75.8	0.23	0.47	0.64	171	83%	142	138	97%	4.0	3%	0.0	0%	138	4	0	0	Oct 01	45%
1962	-4.9	43.8	73.3	0.24	0.48	0.64	176	61%	106	98	93%	7.9	7%	0.0	0%	98	8	0	0	Oct 01	97%
1963	-11.2	41.8	75.6	0.22	0.47	0.64	172	66%	114	107	94%	6.8	6%	0.0	0%	107	7	0	0	Oct 01	89%
1964	-2.0	43.8	75.3	0.24	0.49	0.64	179	60%	107	99	93%	7.8	7%	0.0	0%	99	8	0	0	Oct 01	95%
1965	12.7	44.3	68.8	0.30	0.48	0.60	177	49%	86	75	87%	11.5	13%	0.0	0%	75	12	0	0	Oct 01	98%
1966	18.0	44.3	68.8	0.33	0.48	0.60	176	79%	138	134	97%	4.2	3%	0.0	0%	134	4	0	0	Oct 01	55%
1967	18.0	44.3	68.8	0.33	0.48	0.60	176	94%	166	165	99%	1.2	1%	0.0	0%	165	1	0	0	Oct 01	14%
1968	-16.1	43.5	76.9	0.20	0.48	0.64	176	78%	138	133	97%	4.2	3%	0.0	0%	133	4	0	0	Oct 01	56%
1969	-6.6	44.0	68.8	0.23	0.48	0.60	176	91%	159	157	99%	2.0	1%	0.0	0%	157	2	0	0	Oct 01	20%
1970	18.0	44.3	68.8	0.33	0.48	0.60	176	79%	139	135	97%	4.2	3%	0.0	0%	135	4	0	0	Oct 01	52%
1971	18.0	44.3	68.8	0.33	0.48	0.60	176	85%	150	147	98%	3.0	2%	0.0	0%	147	3	0	0	Oct 01	33%
1972	18.0	44.3	68.8	0.33	0.48	0.60	176	88%	155	152	98%	2.4	2%	0.0	0%	152	2	0	0	Oct 01	30%
1973	-3.5	45.1	74.1	0.24	0.47	0.64	173	90%	157	155	99%	2.0	1%	0.0	0%	155	2	0	0	Oct 01	23%
1974	-10.8	43.0	73.2	0.22	0.46	0.64	169	87%	146	144	98%	2.9	2%	0.0	0%	144	3	0	0	Oct 01	38%
1975	-0.9	43.4	76.8	0.25	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	0	0	Oct 01	5%
1976	-12.2	44.5	73.8	0.21	0.47	0.64	172	98%	169	169	100%	0.4	0%	0.0	0%	169	0	0	0	Oct 01	9%
1977	-1.6	42.9	77.3	0.26	0.47	0.64	171	95%	163	162	99%	0.8	1%	0.0	0%	162	1	0	0	Oct 01	16%
1978	-2.2	42.6	75.0	0.25	0.46	0.64	168	81%	136	132	97%	3.8	3%	0.0	0%	132	4	0	0	Oct 01	63%
1979	-10.4	43.5	75.6	0.22	0.47	0.64	171	77%	132	128	97%	4.5	3%	0.0	0%	128	5	0	0	Oct 01	64%
1980	0.3	44.1	75.9	0.26	0.48	0.64	177	69%	122	115	95%	6.7	5%	0.0	0%	115	7	0	0	Oct 01	81%
1981	-9.5	42.2	76.9	0.22	0.47	0.64	172	67%	115	107	93%	7.8	7%	0.0	0%	107	8	0	0	Oct 01	91%
1982	-6.9	41.3	77.9	0.23	0.47	0.64	170	82%	140	136	97%	3.5	3%	0.0	0%	136	4	0	0	Oct 01	48%
1983	-4.5	45.9	77.3	0.25	0.47	0.64	173	66%	115	108	94%	7.1	6%	0.0	0%	108	7	0	0	Oct 01	88%
1984	-8.9	43.8	75.1	0.22	0.46	0.64	168	74%	125	119	96%	5.5	4%	0.0	0%	119	6	0	0	Oct 01	75%
1985	1.5	45.1	76.3	0,26	0.48	0.64	174	71%	123	116	95%	6.3	5%	0.0	0%	116	6	0	0	Oct 01	80%
1986	-1.0	44.8	77.4	0.25	0.47	0.64	171	98%	168	167	100%	0.6	0%	0.0	0%	167	1	0	0	Oct 01	11%
1987	-47	45.0	76.5	0.74	0.47	0.64	172	82%	14.2	139	98%	33	2%	0.0	0%	139	3	0 0	n n	Oct 01	44%
1988	-5.0	443	79.1	0.24	0.48	0.64	174	85%	14.8	145	98%	2.9	2%	0.0	0%	145	3	0	ů N	Oct 01	36%
1989	-4.6	44.0	76.0	0.23	0.47	0.64	172	94%	162	161	99%	1.4	1%	0.0	0%	161	1	n n	ñ	Oct 01	19%
1990	_3.8	443	73.1	0.74	0.48	0.64	174	89%	155	153	99%	22	1%	0.0	0%	153	2	0 0	n n	Oct 01	28%
1991	0.0	463	75.8	0.26	0.49	0.64	180	76%	138	133	97%	45	3%	0.0	0%	133	- -	0	ñ	Oct 01	58%
1992	47	43.9	73.2	0.27	0.47	0.64	173	80%	137	133	97%	43	3%	0.0	0%	133	4	0	n n	Oct 01	59%
1993	-67	43.9	78 /.	0.23	0/.7	0.67	172	67%	116	10.9	96%	7.0	6%	0.0	0%	109	7	ň	n n	Oct 01	84%
199%	_1/. 9	427	77.0	0.20	0/.7	0.67	171	82%	1/.0	136	97%	3.6	3%	0.0	0%	136	, /.	n	n N	Oct 01	5.0%
1995	=/-9	45.6	773	0.20	0/.9	0.64	178	70%	12/.	119	95%	5.0	5%	0.0	0%	119	- 	n	0	Oct 01	77%
1996	9 2	43.0	727	0.24	0.47	0.64	169	88%	1/.9	1/-7	98%	21.	2%	0.0	0%	1/.7	2	n	n	Oct 01	34.92
1007	- 7.2	4.1.2	76.0	0.22	0/7	0.04	107	700%	120	197	060/	2.4 1.0	1.9/	0.0	0%	197	۲ ۲	0	0	0ct 01	70%
1/27	-1.7	44.4	71. 1.	0.25	0.47	0.04	174	75%	120	125	96%	+.7 5.2	4/0	0.0	0%	125	5	0	0	0ct 01	69%
1220	_71	40.0	70.9	0.20	0.40	0.04	177	66%	119	111	9/.9/	7.0	4% 6%	0.0	0%	111	7	0	0	0ct 01	83%
2000	- 1.1	4.5.0	77.0	0.22	0/7	0.04	177	00%	170	170	10.0%	0.0	0%	0.0	0%	170	,	0	0	0ct 01	6%
2000	-0.5	43.0	0.C1 79.0	0.20	0.47	0.04	172	27%	1/ /	1/ 1	0.00%	V.D 3 1	2%	0.0	0%	1/1	v 2	0	0		1.2%
2001	1/ 4	44.1	73.0	0.00	0.40	0.04	101	60%	175	110	00%	67	2/0 5%	0.0	0%	141	ر ۲	0	0	0ct 01	79%
2002	-6.6	47.0	7/. 0	0.27	0.50	0.04	170	92%	156	157	,U%	15	1%	0.0	0%	110	2	0	0	0ct 01	25%
2000	-0.0	70.4	14.7	v.24	v.+/	0.04	110	12/0		1.04	///0		1/0	0.0	v / o	1,04	-	v		001 01	2.370

Scenario: 6

Source	<u>Max Pump Rate (qpm)</u>									
Hoosic River	: 1,458									
Well	: 39									
<u>Storage</u>	<u>Volume (Mgal)</u>									
Pond	: 0									
<u>Plant</u>	gpm №	1GD								
Average Demand	: 321.6 0	.46								
Peak Demand	: 465.2 0	.67								

Minimum Downstream Flow (csm) 0.70

NA

Output For Scenario 6																					
	Wet Bulb Temperatures Plant Demand							Plant	Consum	ption				Source P	roduction	Storage Pond					
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	We	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Pond		Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
2004	-8.7	44.6	74.4	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	0	0	Oct 01	3%
2005	-7.2	45.0	76.1	0.22	0.48	0.64	174	76%	132	128	97%	4.5	3%	0.0	0%	128	4	0	0	Oct 01	66%
2006	5.7	45.9	77.8	0.28	0.49	0.64	177	94%	166	165	99%	1.2	1%	0.0	0%	165	1	0	0	Oct 01	13%
2007	0.1	44.7	76.5	0.26	0.49	0.64	177	87%	155	153	98%	2.4	2%	0.0	0%	153	2	0	0	Oct 01	27%
2008	0.5	45.4	77.6	0.26	0.49	0.64	177	96%	170	169	99%	0.9	1%	0.0	0%	169	1	0	0	Oct 01	8%
2009	0.3	43.6	74.5	0.26	0.47	0.64	172	100%	172	172	100%	0.1	0%	0.0	0%	172	0	0	0	Oc† 01	2%
Average	-2.0	44.3	75.0	0.25	0.48	0.64	174	81%	140	136	97%	4.0	3%	0.0	0%	136	4	0	0	Oct 01	
Minimum	-16.1	41.3	68.8	0.20	0.46	0.60	168	49%	86	75	87%	0.0	0%	0.0	0%	75	0	0	0	Oct 01	
Maximum	18.0	47.0	79.8	0.33	0.50	0.64	181	100%	172	172	100%	11.5	13%	0.0	0%	172	12	0	0	Oct 01	
<u>Worst-Case Year</u> 1965	12.7	44.3	68.8	0.30	0.48	0.60	177	49%	86	75	87%	11.5	13%	0.0	0%	74.7	11.5	0	0	Oct 01	98%
N=	63																				

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm| Graph1

10/12/2010

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm, Graph2, 10/12/2010

Beaver Wood Energy Pownal LLC – Water Needs & Availability Study Streamflow, Groundwater, and Storage Mass Hydrograph Analysis Model Output

Scenario: 7

Source	Max Pump	Rate (gpm)	<u>Minimum Downstream Flow (csm)</u>
Hoosic River:	1,458		0.70
Well:	39		NA
<u>Storage</u>	Volume (M	<u>gal)</u>	
Pond:	12		
<u>Plant</u>	gpm	MGD	
Average Demand:	321.6	0.46	
Peak Demand	465.2	0.67	

Output For Scenario 7																					
	Wet E	Bulb Temper	atures		Plant	Demand				Plani	t Consum	nption				Source P	Production	S	torage Po	ond	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	W	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
1947	4.7	44.6	76.6	0.28	0.47	0.64	172	100%	172	149	87%	2.4	1%	20.6	12%	161	3	0	4	Sep 04	31%
1948	-12.5	42.3	77.5	0.21	0.47	0.64	171	88%	150	109	72%	7.2	5%	34.2	23%	138	8	4	0	Sep 30	86%
1949	3.8	46.2	75.8	0.27	0.49	0.64	178	80%	143	102	71%	8.0	6%	33.3	23%	143	9	0	0	Oct 01	92%
1950	-6.8	43.5	72.7	0.24	0.47	0.64	171	100%	171	141	83%	3.3	2%	26.4	15%	167	4	9	6	Sep 30	41%
1951	-2.0	44.8	72.4	0.24	0.47	0.64	173	100%	173	161	93%	1.3	1%	10.6	6%	174	2	9	5	Sep 30	17%
1952	-6.9	44.4	77.6	0.23	0.48	0.64	174	100%	174	143	82%	3.1	2%	27.8	16%	165	4	12	6	Sen 04	39%
1953	36	453	75.9	0.29	0.48	0.64	177	81%	143	100	70%	81	6%	35.0	24%	127	9	7	0	Sen 30	94%
1954	-2.9	45.5	74.6	0.24	0.48	0.64	174	93%	162	121	74%	5.9	4%	35.7	24%	167	7	0	0	Oct 01	72%
1955	_81	45.4	77.6	0.23	0.48	0.64	175	9/.%	165	136	83%	3.8	2%	25.1	15%	161		12	0	Sen 25	1.7%
1956	-9.0	423	73.5	0.22	0.46	0.64	169	95%	160	132	83%	3.7	2%	237	15%	155	4	12	0	Sen 22	61%
1957	_13.5	1.6.2	75.6	0.20	0.48	0.64	176	90%	15.9	121	76%	5.6	3%	32.9	21%	1/.1	6	12	0	Jul 0/	73%
1957	5.2	44.2	71.1.	0.20	0.40	0.64	170	93%	16.2	121	83%	1.3	3%	23.5	1/.9/	141	5	12	0	Son 30	53%
1930	-J.Z	44.2	74.4	0.25	0.40	0.04	174	10.0%	102	125	72%	4.5	3%	1.37	25%	100	5	12	1	Sep 02	67%
1953	-1.7	44.0	72.1	0.20	0.40	0.04	174	100%	174	12.3	0.19/	4.0	10/	43.7	23/0	100	0	12	0	Sep 02	01%
1960	5.0	44.7	72.4	0.27	0.47	0.64	175	33%	172	137	91/6	1.0	1/6	15.1	0/0	100	2	1	0	Sep 50	22/0
1961	- t.b	43.9	15.8	0.23	0.47	0.64	171	100%	111	138	80%	4.0	2%	29.8	11%	162	5	12	2	Sep 04	45%
1962	-4.9	43.8	13.3	0.24	0.48	0.64	175	82%	144	98	69%	1.9	5%	31.3	20%	130	9	8	0	Sep 30	91%
1963	-11.2	41.8	15.6	0.22	0.47	0.64	172	82%	142	10 7	16%	6.8	5%	27.5	19%	134	8	3	0	Sep 30	89%
1964	-2.0	43.8	75.3	0.24	0.49	0.64	179	73%	130	99	76%	7.8	6%	23.4	18%	118	8	3	0	Sep 30	95%
1965	12. <i>†</i>	44.3	68.8	0.30	0.48	0.60	177	12%	126	15	59%	11.5	9%	40.1	32%	125	13	0	0	Oct 01	98%
1966	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	134	76%	4.2	2%	37.5	21%	167	5	12	0	Sep 30	55%
1967	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	165	94%	1.2	1%	9.8	6%	174	1	8	4	Sep 30	14%
1968	-16.1	43.5	76.9	0.20	0.48	0.64	176	90%	159	133	84%	4.2	3%	21.1	13%	146	5	8	0	Sep 30	56%
1969	-6.6	44.0	68.8	0.23	0.48	0.60	176	98%	173	157	91%	2.0	1%	13.2	8%	177	3	0	0	Sep 30	20%
1970	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	175	135	77%	4.2	2%	36.4	21%	175	5	7	0	Sep 30	52%
1971	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	147	83%	3.0	2%	26.0	15%	172	4	12	4	Sep 12	33%
1972	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	152	87%	2.4	1%	21.2	12%	162	3	12	1	Oc† 01	30%
1973	-3.5	45.1	74.1	0.24	0.47	0.64	173	99%	172	155	90%	2.0	1%	15.1	9%	175	3	1	0	Sep 30	23%
1974	-10.8	43.0	73.2	0.22	0.46	0.64	169	98%	166	144	87%	2.9	2%	19.5	12%	167	4	7	0	Sep 30	38%
1975	-0.9	43.4	76.8	0.25	0.47	0.64	171	100%	171	171	100%	0.0	0%	0.0	0%	171	0	12	12	Oct 01	5%
1976	-12.2	44.5	73.8	0.21	0.47	0.64	172	100%	172	169	98%	0.4	0%	3.3	2%	172	1	12	10	Sep 26	9%
1977	-1.6	42.9	77.3	0.26	0.47	0.64	171	100%	171	162	95%	0.8	0%	8.0	5%	170	1	12	9	Sep 13	16%
1978	-2.2	42.6	75.0	0.25	0.46	0.64	168	99%	167	132	79%	3.8	2%	31.4	19%	151	4	12	0	Aug 08	63%
1979	-10.4	43.5	75.6	0.22	0.47	0.64	171	98%	168	128	76%	4.5	3%	36.1	21%	174	6	0	0	Oct 01	64%
1980	0.3	44.1	75.9	0.26	0.48	0.64	177	87%	153	115	75%	6.7	4%	31.5	21%	134	7	12	0	Jul 12	81%
1981	-9.5	42.2	76.9	0.22	0.47	0.64	172	94%	162	107	66%	7.8	5%	47.5	29%	165	10	0	0	Oct 01	91%
1982	-6.9	41.3	77.9	0.23	0.47	0.64	170	94%	159	136	86%	3.5	2%	19.2	12%	143	4	12	0	Sep 30	48%
1983	-4.5	45.9	77.3	0.25	0.47	0.64	173	81%	140	108	77%	7.1	5%	25.5	18%	133	8	0	0	Oct 01	88%
1984	-8.9	43.8	75.1	0.22	0.46	0.64	168	86%	145	119	82%	5.5	4%	20.4	14%	139	6	0	0	Oct 01	75%
1985	1.5	45.1	76.3	0.26	0.48	0.64	174	99%	173	116	67%	6.3	4%	49.9	29%	176	8	0	0	Sep 30	80%
1986	- 1.0	44.8	77.4	0.25	0.47	0.64	171	100%	171	167	97%	0.6	0%	3.7	2%	171	1	12	10	Sep 30	11%
1987	-4.7	45.0	76.5	0.24	0.47	0.64	172	100%	172	139	80%	3.3	2%	30.6	18%	168	4	12	2	Sep 14	44%
1988	-5.0	44.3	79.1	0.24	0.48	0.64	174	100%	174	145	83%	2.9	2%	26.5	15%	169	4	12	0	Sep 18	36%
1989	-4.6	44.0	76.0	0.23	0.47	0.64	172	100%	172	161	94%	1.4	1%	9.6	6%	171	2	11	7	Sep 30	19%
1990	-3.8	44.3	73.1	0.24	0.48	0.64	174	100%	174	153	88%	2.2	1%	19.1	11%	170	3	12	2	Sep 27	28%
1991	0.0	46.3	75.8	0.26	0.49	0.64	180	94%	169	133	79%	4.5	3%	31.3	19%	164	6	11	0	Sep 30	58%
1992	4.7	43.9	73.2	0.27	0.47	0.64	173	100%	173	133	77%	4.3	2%	35.2	20%	162	5	12	4	Aug 19	59%
1993	-6.7	43.9	78.4	0.23	0.47	0.64	172	91%	157	109	69%	7.0	4%	41.1	26%	153	9	7	0	Sep 30	84%
1994	-14.9	42.7	77.0	0.20	0.47	0.64	171	100%	171	136	80%	3.6	2%	31.4	18%	164	5	12	1	Aug 19	50%
1995	-4.9	45.6	77.3	0.24	0.49	0.64	178	88%	156	119	76%	5.8	4%	31.3	20%	139	7	10	0	Sep 30	77%
1996	-9.2	43.6	72.7	0.22	0.46	0.64	169	96%	163	147	90%	2.4	1%	14.2	9%	172	3	0	0	Sep 30	34%
1997	-1.9	44.7	76.6	0.25	0.47	0.64	172	96%	164	123	75%	4.9	3%	36.0	22%	148	6	12	0	Jul 08	70%
1998	3.5	46.5	74.4	0.26	0.48	0.64	174	88%	154	125	81%	5.2	3%	23.9	16%	146	6	2	0	Sep 30	69%
1999	-7.1	45.8	79.8	0.22	0.49	0.64	177	88%	156	111	71%	7.0	4%	38.9	25%	160	9	0	0	Oct 01	83%
2000	-65	45.0	73.6	0.23	0.47	0.64	172	100%	172	170	99%	03	0%	19	1%	172	0	12	10	Feb 14	6%
2001	76	44.1	78.0	0.30	0.48	0.64	174	98%	169	141	83%	31	2%	25.2	15%	165	L .	12	0	Sep 29	42%
2001	1/- 6	/ 7 0	775	0.30	0.40	0.67	191	95%	172	119	68%	67	1.9	1.7.6	28%	162	я	12	۰ ۱	Sep 30	78%
2002	-6.6	47.0	7/. 9	0.2/.	0.50	0.64	170	100%	170	157	91%	15	1%	13.8	8%	171	2	<u>، د</u>	7	Sep 30	25%
2005	0.0		1.7.2	V.2 T	V. T /	0.04					1 2120				0/0		1 -		· ·		23/0

Scenario: 7

Source		Max Pump	Rate (gpm)
Hoosic	River:	1,458	
	Well:	39	
Storage		Volume (M	gal)
	Pond:	12	
Plant		gpm	MGD
Average D	emand:	321.6	0.46
Peak D	emand:	465.2	0.67

Minimum Downstream Flow (csm) 0.70

NA

	Output For Scenario 7																				
	Wet B	ulb Tempera	b Temperatures Plant Demand							Plant	Consum	ption				Source Production Storage Pond					
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	Ri	ver	We	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
2004	-8.7	44.6	74.4	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	12	12	Oct 01	3%
2005	-7.2	45.0	76.1	0.22	0.48	0.64	174	90%	156	128	82%	4.5	3%	24.2	15%	146	5	12	0	Jul 18	66%
2006	5.7	45.9	77.8	0.28	0.49	0.64	177	100%	177	165	93%	1.2	1%	10.8	6%	181	2	6	3	Sep 30	13%
2007	0.1	44.7	76.5	0.26	0.49	0.64	177	100%	177	153	86%	2.4	1%	22.3	13%	168	3	12	5	Sep 12	27%
2008	0.5	45.4	77.6	0.26	0.49	0.64	177	100%	177	169	95%	0.9	1%	7.7	4%	183	1	5	1	Sep 30	8%
2009	0.3	43.6	74.5	0.26	0.47	0.64	172	100%	172	172	100%	0.1	0%	0.4	0%	172	0	12	12	Sep 27	2%
Average	-2.0	44.3	75.0	0.25	0.48	0.64	174	95%	165	136	82%	4.0	3%	24.5	15%	160	5	8	2	Jul 13	
Minimum	-16.1	41.3	68.8	0.20	0.46	0.60	168	72%	126	75	59%	0.0	0%	0.0	0%	118	0	0	0	Oct 01	
Maximum	18.0	47.0	79.8	0.33	0.50	0.64	181	100%	177	172	100%	11.5	9%	49.9	32%	183	13	12	12	Sep 30	
<u>Worst-Case Year</u> 1965	12.7	44.3	68.8	0.30	0.48	0.60	177	72%	126	75	59%	11.5	9%	40.1	32%	124.9	13.1	0	0	Oc† 01	98%
n=	63																				

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm| Graph1

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm, Graph2, 10/12/2010

Beaver Wood Energy Pownal LLC – Water Needs & Availability Study Streamflow, Groundwater, and Storage Mass Hydrograph Analysis Model Output

Scenario: 8

Source	Max Pump	Rate (gpm)	<u>Minimum Downstream Flow (csm)</u>
Hoosic River:	1,458		0.70
Well:	39		NA
<u>Storage</u>	Volume (M	lgal)	
Pond:	73		
<u>Plant</u>	gpm	MGD	
Average Demand:	321.6	0.46	
Peak Demand	465.2	0.67	

				Output For Scenario 8																	
	Wet B	ulb Temper	atures	Plant Demand					Plant	Consum	ption				Source P	roduction	Storage Pond				
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	R	iver	W	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
1947	4.7	44.6	76.6	0.28	0.47	0.64	172	100%	172	149	87%	2.4	1%	20.6	12%	161	3	0	65	Sep 04	31%
1948	-12.5	42.3	77.5	0.21	0.47	0.64	171	100%	171	109	64%	7.2	4%	55.2	32%	147	8	65	50	Sep 30	86%
1949	3.8	46.2	75.8	0.27	0.49	0.64	178	100%	178	102	57%	8.0	4%	68.0	38%	168	10	50	35	Sep 30	92%
1950	-6.8	43.5	72.7	0.24	0.47	0.64	171	100%	171	141	83%	3.3	2%	26.4	15%	186	5	50	48	Sep 30	41%
1951	-2.0	44.8	72.4	0.24	0.47	0.64	173	100%	173	161	93%	1.3	1%	10.6	6%	174	2	70	66	Sep 30	17%
1952	-6.9	44.4	77.6	0.23	0.48	0.64	174	100%	174	143	82%	3.1	2%	27.8	16%	165	4	73	67	Sen 04	39%
1953	3.6	45.3	75.9	0.29	0.48	0.64	177	100%	177	100	57%	81	5%	68.4	39%	135	9	68	35	Sen 30	94%
1954	-2.9	45.5	74.6	0.24	0.48	0.64	174	100%	174	121	69%	5.9	3%	476	27%	203	9	35	24	Sen 30	72%
1955	-81	45.4	77.6	0.23	0.48	0.64	175	100%	175	136	78%	3.8	2%	35.2	20%	170	5	73	51	Sen 25	47%
1956	_9.0	423	73.5	0.22	0.46	0.64	169	100%	169	132	78%	37	2%	33.0	20%	164	5	73	52	Sen 28	61%
1957	-13.5	44.2	75.6	0.20	0.48	0.64	176	100%	176	121	68%	5.6	3%	50.3	29%	141	6	73	44	lul 04	73%
1958	-5.2	44.2	74.4	0.23	0.48	0.64	176	100%	17/	13/	77%	4.3	2%	35.1	20%	196	6	1.6	32	Sen 30	53%
1959	-1.9	44.2	775	0.25	0.48	0.64	174	100%	174	125	72%	4.5	3%	137	25%	157	6	73	62	Sen 02	67%
1955	5.0	44.0	72.6	0.20	0.40	0.64	173	100%	173	157	91%	1.0	1%	1/. 6	8%	182	2	62	60	Sop 30	22%
1961	7.6	/.3.0	75.8	0.27	0.47	0.64	171	100%	171	138	80%	1.0	2%	20.8	17%	162	5	73	63	Sep 0/	1.5%
1962	- 1.0	43.7	73.3	0.25	0.47	0.64	176	100%	176	98	56%	7.0	5%	69.3	30%	13/	9	69	33	Sep 04	4378
1902	-4.7	43.0	75.5	0.24	0.40	0.04	170	100%	170	107	62%	6.0	1%	57.0	37/0	154	,	24	21	Sep 30	91%
1905	-11.2	41.0	75.0	0.22	0.47	0.04	172	100%	172	00	02/0	7.0	4/0	71.0	10%	101	2 10	50	1(Sep 30	07/0
1964	-2.0	43.0	10.0	0.24	0.49	0.64	179	100%	179	99	22%	11.0	4%	71.9	40%	102	10	24	10	Sep 30	70%
1905	12.7	44.5	00.0	0.00	0.40	0.00	177	100%	170	12/	42/0	1.5	29/	30.2	21%	107	(J	57	5/	Sep 30	70%
1960	10.0	44.5	00.0	0.33	0.40	0.60	170	100%	170	104	10/%	4.2	270 197	57.0	21/6	100	0	55	54	Sep 30	1/ 9/
1967	10.0	44.5	76.0	0.33	0.40	0.60	170	100%	170	100	74%	1.2	1/6	9.0	0/6	174		69	65	Sep 30	14%
1968	- Ib. I	43.5	10.9	0.20	0.48	0.64	175	100%	176	153	15%	4.2	2%	38.1	22%	146	5	69	44	Sep 30	50%
1969	-6.6	44.0	68.8	0.23	0.48	0.60	176	100%	176	15 f	90%	2.0	1%	16.1	9%	196	3	44	41	Sep 30	20%
1970	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	135	11%	4.2	2%	36.8	21%	175	5	68	61	Sep 30	52%
1971	18.0	44.3	68.8	0.33	0.48	0.60	176	100%	176	14 f	83%	3.0	2%	26.0	15%	172	4	13	65	Sep 12	33%
1972	18.0	44.3	68.8	0.33	0.48	0.60	175	100%	176	152	81%	2.4	1%	21.2	12%	162	3	13	62	Uct 01	30%
1973	-3.5	45.1	14.1	0.24	0.4 f	0.64	173	100%	1#3	155	89%	2.0	1%	16.6	10%	176	3	62	59	Sep 30	23%
1974	- 10.8	43.0	#3.Z	0.22	0.46	0.64	169	100%	169	144	85%	2.9	2%	22.8	13%	171	4	68	58	Sep 30	38%
1975	-0.9	43.4	76.8	0.25	0.47	0.64	1/1	100%	1/1	1/1	100%	0.0	0%	0.0	0%	1/1	0	13	13	Oct 01	5%
1976	-12.2	44.5	13.8	0.21	0.47	0.64	172	100%	172	169	98%	0.4	0%	3.5	2%	172	1	13	<i>t</i> 1	Sep 26	9%
1977	-1.6	42.9	##.3	0.26	0.47	0.64	171	100%	171	162	95%	8.0	0%	8.0	5%	170	1	13	70	Sep 13	16%
1978	-2.2	42.6	75.0	0.25	0.46	0.64	168	100%	168	132	78%	3.8	2%	32.4	19%	151	4	13	60	Aug 08	63%
1979	- 10.4	43.5	15.6	0.22	0.47	0.64	171	100%	171	128	15%	4.5	3%	39.1	23%	178	6	60	58	Sep 30	64%
1980	0.3	44.1	75.9	0.26	0.48	0.64	177	100%	177	115	65%	6. <i>†</i>	4%	54.9	31%	134	t t	13	38	Jul 12	81%
1981	-9.5	42.2	76.9	0.22	0.47	0.64	172	100%	172	10 #	62%	1.8	5%	51.3	33%	197	11	38	29	Sep 30	91%
1982	-6.9	41.3	# #.9	0.23	0.47	0.64	170	100%	170	136	80%	3.5	2%	30.1	18%	143	4	13	50	Sep 30	48%
1983	-4.5	45.9	<i>H</i> .3	0.25	0.4 f	0.64	173	100%	173	108	62%	<i>t</i> .1	4%	58.3	34%	156	9	50	31	Sep 30	88%
1984	-8.9	43.8	15.1	0.22	0.46	0.64	168	100%	168	119	t 1%	5.5	3%	43.1	20%	170	t C	41	29	Sep 30	15%
1985	1.5	45.1	16.3	0.26	0.48	0.64	1#4	100%	1#4	116	61%	6.3	4%	50.9	29%	188	9	50	49	Sep 30	80%
1986	-1.0	44.8	<i>tt.</i> 4	0.25	0.47	0.64	1/1	100%	1/1	167	91%	0.6	0%	3.t	2%	1/1	1	f3	<i>f</i> 1	Sep 30	11%
1987	-4.1	45.0	10.5	0.24	0.47	0.64	172	100%	172	139	80%	5.5	2%	3U.6	10%	108	4	15	ده 	Sep 14	44%
1988	-5.0	44.3	79.1	0.24	0.48	0.64	174	100%	174	145	83%	2.9	2%	26.6	15%	169	4	f3 70	61	Sep 18	36%
1989	-4.6	44.0	16.0	0.23	0.47	0.64	1/2	100%	172	161	94%	1.4	1%	9.6	b%	1/1	2	f2	68	Sep 30	19%
1990	- J.8	44.3	13.1	0.24	0.48	0.64	174	100%	174	153	88%	2.2	1%	19.1	11%	170	5	15	63	Sep 27	28%
1991	0.0	46.3	15.8	0.26	0.49	0.64	180	100%	180	133	14%	4.5	2%	42.1	24%	1/5	6	f2	50	Sep 30	58%
1992	4.1	43.9	13.2	0.27	0.47	0.64	173	100%	173	155	11%	4.5	2%	35.Z	20%	103	5	13	65	Sep 30	59%
1993	-b.f	43.9	18.4	0.25	0.47	0.64	172	100%	172	109	0000	1.0	4%	50.9	33%	155	9	68	45	Sep 30	84%
1994	-14.9	42.7	++.0	0.20	0.47	0.64	171	100%	171	136	80%	3.6	2%	31.4	18%	177	5	60	61	Sep 30	50%
1995	-4.9	45.6	++.3	0.24	0.49	0.64	178	100%	178	119	67%	5.8	3%	53.2	30%	139	Ŧ	+1	39	Sep 30	+ + %
1996	-9.2	43.6	72.7	0.22	0.46	0.64	169	100%	169	147	87%	2.4	1%	20.4	12%	199	4	39	38	Sep 30	34%
1997	-1.9	44.2	76.6	0.25	0.47	0.64	172	100%	172	123	72%	4.9	3%	43.7	25%	148	6	73	53	Jul 08	70%
1998	3.5	46.5	74.4	0.26	0.48	0.64	174	100%	174	125	72%	5.2	3%	44.3	25%	154	6	55	41	Sep 30	69%
1999	-7.1	45.8	79.8	0.22	0.49	0.64	177	100%	177	111	62%	7.0	4%	59.8	34%	194	10	41	38	Sep 30	83%
2000	-6.5	45.0	73.6	0.23	0.47	0.64	172	100%	172	170	99%	0.3	0%	1.9	1%	177	1	68	69	Sep 30	6%
2001	7.6	44.1	78.0	0.30	0.48	0.64	174	100%	174	141	81%	3.1	2%	29.2	17%	166	4	73	57	Aug 12	42%
2002	14.6	47.0	77.5	0.31	0.50	0.64	181	100%	181	118	65%	6.7	4%	56.2	31%	165	8	69	52	Sep 30	78%
2003	-6.6	43.4	74.9	0.24	0.47	0.64	170	100%	170	154	91%	1.5	1%	13.8	8%	179	2	61	62	Sep 30	25%

Scenario: 8

Source	Max Pump F	Rate (gpm)
Hoosic Rive	r: 1,458	
We	ll: 39	
<u>Storage</u>	Volume (Mg	al)
Pon	d: 73	
<u>Plant</u>	gpm	MGD
Average Deman	d: 321.6	0.46
Peak Deman	d: 465.2	0.67

Minimum Downstream Flow (csm) 0.70

NA

	Output For Scenario 8																				
	Wet B	ulb Tempera	atures		Plant C)emand				Plant	Consum	ption				Source P	roduction	Si	orage Po	ond	
Water	Min	Mean	Max	Min	Mean	Max	Total	%	Total	Ri	ver	We	ell	Stor	age	River	Well	Starting	Minimum	Complete	River Flow
Year								of						Po	nd	Total	Total	Volume	Volume	Refill	Exceedence
	F	F	F	MGD	MGD	MGD	Mgal	Demand	Mgal	Mgal	%	Mgal	%	Mgal	%	Mgal	Mgal	(Mgal)	(Mgal)	Date	(Percentile)
2004	-8.7	44.6	74.4	0.23	0.47	0.64	172	100%	172	172	100%	0.0	0%	0.0	0%	172	0	73	73	Oct 01	3%
2005	-7.2	45.0	76.1	0.22	0.48	0.64	174	100%	174	128	73%	4.5	3%	42.2	24%	146	5	73	43	Jul 18	66%
2006	5.7	45.9	77.8	0.28	0.49	0.64	177	100%	177	165	93%	1.2	1%	10.8	6%	198	2	50	46	Sep 30	13%
2007	0.1	44.7	76.5	0.26	0.49	0.64	177	100%	177	153	86%	2.4	1%	22.3	13%	168	3	73	66	Sep 12	27%
2008	0.5	45.4	77.6	0.26	0.49	0.64	177	100%	177	169	95%	0.9	1%	7.7	4%	183	1	66	62	Sep 30	8%
2009	0.3	43.6	74.5	0.26	0.47	0.64	172	100%	172	172	100%	0.1	0%	0.4	0%	172	0	73	73	Sep 27	2%
Average	-2.0	44.3	75.0	0.25	0.48	0.64	174	100%	174	136	78%	4.0	2%	33.7	19%	169	5	62	52	Sep 02	
Minimum	-16.1	41.3	68.8	0.20	0.46	0.60	168	100%	168	75	42%	0.0	0%	0.0	0%	134	0	0	0	Oct 01	
Maximum	18.0	47.0	79.8	0.33	0.50	0.64	181	100%	181	172	100%	11.5	7%	90.2	51%	203	15	73	73	Sep 30	
<u>Worst-Case Year</u> 1965	12.7	44.3	68.8	0.30	0.48	0.60	177	100%	176	75	42%	11.5	7%	90.2	51%	187.3	15.2	27	0	Sep 30	98%
n=	63																				

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm| Graph1

41

F:\57407.00 Beaver Wood Pownal\Data\Hoosic_River\intake_design\MBH_09-22-2010.xlsm, Graph2, 10/12/2010

